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A B S T R A C T   

Due to complex traffic conditions, transition areas in highway work zones are associated with a higher crash risk 
than other highway areas. Understanding risk-contributing features in transition areas is essential for ensuring 
traffic safety on highways. However, conventional surrogate safety measures (SSMs) are quite limited in iden-
tifying the crash risk in transition areas due to the complex traffic environment. To this end, this study proposes 
an improved safety potential field, named the Work-Zone Crash Risk Field (WCRF). The WCRF force can be used 
to measure the crash risk of individual vehicles that enter a work zone considering the influence of multiple 
features, upon which the overall crash risk of the road segment in a specific time window can be estimated. With 
the overall crash risk used as a label, the time-window-based traffic data are used to train and validate an 
eXtreme Gradient Boosting (XGBoost) classifier, and the Shapley Additive Explanations (SHAP) method is in-
tegrated with the XGBoost classifier to identify the key risk-contributing traffic features. To assess the proposed 
approach, a case study is conducted using real-time vehicle trajectory data collected in two work zones along a 
highway in China. The results demonstrate that the WCRF-based SSM outperforms conventional SSMs in iden-
tifying crash risks in work zone transition areas on highways. In addition, we perform lane-based analysis 
regarding the impact of setting up work zones on highway safety and investigate the heterogeneity in risk- 
contributing features across different work zones. Several interesting findings from the analysis are reported 
in this paper. Compared to existing SSMs, the WCRF-based SSM offers a more practical and comprehensive way 
to describe the crash risk in work zones. The approach using the developed WCRF technique offers improved 
capabilities in identifying key risk-contributing features, which is expected to facilitate the development of safety 
management strategies for work zones.   

1. Introduction 

Road maintenance is necessary to ensure the service performance of 
highways, which requires the closure of certain lane(s) for maintenance 
work (Zhang et al., 2020) to avoid passing vehicles crashing into 
workers or equipment. Although various safety management strategies 
for work zones are required in many countries, such as Singapore (Land 
Transport Authority, 2019), China (Ministry of Transport, 2017), and 
the United States (AASHTO, 2018), many work zone crashes still occur 

every year. According to statistical data published by the National 
Highway Traffic Safety Administration (NHTSA) and the Federal High-
way Administration (FHWA) in the United States, the number of crash- 
related fatalities in work zones in 2019 reached 842 (NHTSA, 2019), of 
which approximately 85 % were drivers or vehicle passengers (FWHA, 
2020). Of note, according to the “Code of Practice: Traffic Control at 
Work Zone” (Land Transport Authority, 2019), a standard work zone on 
a highway comprises five areas, namely, advance warning area, transi-
tion area, buffer space, activity area, and termination area, the 
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descriptions of which are summarized in Fig. 1. Traffic accidents pre-
dominantly occur within the transition area, primarily attributed to 
frequent lane changing and braking in these zones (Idewu and Wolshon, 
2010; Weng et al., 2016). Therefore, a comprehensive analysis of the 
crash risks and their contributing features within the transition area of 
the work zone is essential for enhancing the effectiveness of safety 
management strategies. 

Due to the limited quality and quantity of crash reports pertaining to 
work zones, researchers are turning to either simulations or surrogate 
measures for investigating traffic safety in work zones (Hou and Chen, 
2020; Bidkar et al., 2023). Compared to simulation methods, conflict 
analysis based on real-world vehicle trajectory data can better reflect the 
actual risky traffic situations in work zones (Weng et al., 2014). Time to 
collision (TTC) and deceleration rate to avoid a crash (DRAC) are the 
two SSMs that have been widely used for work zone crash risk analysis 
(J. Wang et al., 2022). The traffic environment, including the number of 
lanes, speed limit, etc., can be greatly changed when a work zone is 
established, which may result in frequent lane changing and braking by 
vehicles (Kummetha et al., 2020). However, most conventional SSMs 
have the following two limitations when measuring crash risks in work 
zones: they cannot a) fully consider the impact of several factors (e.g., 
vehicle type or road geometry) on the crash risk (Kordani et al., 2018), 
and b) sufficiently describe the crash risk in some scenarios involving 
vehicle interaction, such as vehicle following with similar speeds 
(Mahmud et al., 2017) or lane changing (Arun et al., 2021). 

Given the inherent constraints of conventional SSMs, some scholars 
have developed SSMs based on potential field theory (Wolf and Burdick, 
2008; Wang et al., 2016; Li et al., 2019; Arun et al., 2023). These 
methods creatively used virtual fields to describe the impact of sur-
rounding objects, such as vehicles and road facilities, on the driving 
safety of a target vehicle (Ma et al., 2023). Since the SSMs based on the 
safety potential field consider the interaction between all road users, 
they provide a suitable approach for measuring crash risk in complex 
traffic environments. Currently, safety potential field models have been 
widely used in motion control and collision warning scenarios (Li et al., 
2020a; Li et al., 2020b). However, applying safety potential field theory 
to measure crash risks in highway work zones faces the following 
challenges: a) it is difficult to determine the risk-related thresholds of 
safety potential fields when multiple objects are involved; b) the influ-
ence of road geometry on crash risk is often ignored; and c) most pre-
vious models require many parameters, which leads to a heavy workload 
in parameter calibration. 

In recent years, the rapid development of artificial intelligence (AI) 
technologies has opened new avenues for in-depth analysis of traffic 
risks. On the one hand, compared to conventional radar-based tech-
niques (C. Zhang et al., 2022), AI-powered computer vision technologies 
can more accurately capture the real-time trajectories and basic infor-
mation of vehicles (St-Aubin et al., 2015), providing a solid foundation 
for crash risk measurement within safety potential field theory. On the 
other hand, machine learning techniques have shown enormous 

potential for investigating the correlations between crash risk and risk- 
contributing features (Hu et al., 2022). Compared to conventional sta-
tistical methods, machine learning techniques possess superior capa-
bility in solving high-dimensional data manipulation and nonlinear 
problems (Yuan et al., 2022). Therefore, this study employs machine 
vision technologies to obtain real-time trajectory data and adopts ma-
chine learning techniques to identify the key risk-contributing features. 

To summarize, in this study, a comprehensive approach is proposed 
to identify key risk-contributing features and investigate crash risks in 
highway work zones. To resolve the abovementioned gaps in previous 
studies, the proposed approach adopts an improved safety potential field 
model, named the Work-Zone Crash Risk Field (WCRF), to measure the 
crash risks of vehicles. Compared to conventional field-based SSMs, the 
WCRF-based SSM (WCRF force) is improved from multiple perspectives, 
which makes it more practical to implement and better suited for 
measuring crash risks in work zones. By employing the WCRF force, the 
overall crash risk of a road segment with a work zone during a specific 
time window can be estimated, and the key risk-contributing features 
can be further identified using machine learning techniques. As a case 
study, real-time vehicle trajectory data, which are collected from sur-
veillance videos along a highway in China, are used to validate and 
assess the proposed approach. This study makes the following two major 
contributions. First, at the methodological level, we develop an 
improved field-based SSM that is able to describe crash risk in work 
zones in a practical and comprehensive way. Second, at the application 
level, the findings related to key risk-contributing features reveal the 
impact of setting up work zones as well as the heterogeneity in crash risk 
across different work zones on highways. The proposed approach would 
facilitate highway management authorities in identifying the key risk- 
contributing features of work zones, leading to the development of 
more effective safety management strategies. 

The remainder of the paper is structured as follows. Section 2 pro-
vides a literature review. Section 3 introduces the methodology. Section 
4 introduces the data preparation steps. The results and discussion are 
presented in Section 5. Finally, Section 6 provides the conclusions of our 
work. 

2. Literature review 

2.1. Features influencing crash risk in work zones 

Previous research has explored the features that might affect the 
crash risk in work zones from four perspectives: work zone layouts 
(Mashhadi et al., 2021), traffic flow features (Meng and Weng, 2011), 
weather conditions (Hou and Chen, 2020), and road conditions (Zhang 
et al., 2020). Scientific and rational planning of work zones can effec-
tively improve their safety. Within the work zone layouts, key features 
affecting crash risk include the length of different areas within the work 
zone (Yang et al., 2013), the lanes occupied by the work zone (Zhang 
et al., 2020), and the placement and type of traffic signs (Bella, 2005). 

Fig. 1. Components of a work zone on a one-way three-lane road: advance warning area, which alerts drivers of upcoming changes; transition area, which redirects 
traffic and indicates driver requirements; buffer space, providing worker protection and separating traffic from the work area; activity area, where work takes place 
with workers and equipment; and termination area, allowing traffic to resume normal conditions. 
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Compared to static work zone layouts, the influence of dynamic traffic 
flow features on traffic safety is more complex (Bidkar et al., 2023). In 
terms of traffic flow, key features include the proportion of trucks (Meng 
and Weng, 2011), the capacity values of work zones (Chatterjee et al., 
2009), traffic volume and speed across lanes (Weng et al., 2016), and 
vehicle-following patterns (Weng et al., 2014). Weather conditions and 
road geometry also play a significant role in crash risk. For instance, 
work zones face increased crash risks in adverse weather conditions such 
as rain and fog (Adomah et al., 2022), and work zones situated on steep 
slopes or tight curves are more hazardous than in other segments (Li and 
Bai, 2009). 

Due to time and space constraints, it is difficult to avoid placing work 
zones during periods of poor weather or in areas with suboptimal road 
geometry. However, work zone layouts and traffic flow features can be 
optimized through measures to enhance safety (Almallah et al., 2021; 
Huang and Bai, 2014). Several countries have released guidelines spe-
cifically for work zone layouts (NHTSA, 2019; Land Transport Author-
ity, 2019). Consequently, this study primarily explores the impact of 
traffic flow features on crash risk in work zones, aiming to provide a 
basis for developing safety management strategies. 

2.2. Surrogate safety measures in work zones 

Traffic conflict technology (TCT) is widely considered effective for 
conducting microlevel traffic safety research (Guo et al., 2020a; Pinnow 
et al., 2021; Guo et al., 2020b; Ha et al., 2012). Currently, surrogate 
safety measures (SSMs) (also called conflict measures) can be broadly 
classified into three types: time-based, distance-based, and deceleration- 
based measures (Mahmud et al., 2017). To avoid the risk of false posi-
tives for distance-based measures (Kuang et al., 2015; Park et al., 2018), 
time-based and deceleration-based measures are more commonly used 
in work zone assessment. Currently, the SSMs commonly used in work 
zone traffic safety research include TTC (Osman et al., 2018; Adomah 
et al., 2022), work zone time to collision (WTTC) (Ge et al., 2019), DRAC 
(Meng and Weng, 2011; Weng et al., 2018; Yang et al., 2020), and time 
headway (TWH) (Chatterjee et al., 2009; Zhang et al., 2018). TWH may 
not be suitable for accurate crash risk assessments since the length of 
vehicles is ignored. TTC and DRAC, which are constructed based on the 
relative speed vB − vF and relative distance SF − SB of the preceding (F) 
and following (B) vehicles, are two widely used measures. TTC =

(SF − SB)/(vB − vF), and the conflict threshold can be determined based 
on the driver’s braking response time (Chen et al., 2019). Additionally, 
DRAC = (vB − vF)

2
/(SF − SB), and in this case, the conflict threshold can 

be determined based on the maximum rate of deceleration of the vehicle 
(Shi et al., 2018). 

Despite advantages such as simple computations and high inter-
pretability, most conventional SSMs still exhibit the following draw-
backs when used to measure crash risks in work zones. a) The effects of 
vehicle and road attributes on crash risk are not considered. For 
example, vehicle type and road grade can directly affect braking per-
formance (Kordani et al., 2018). b) Due to the neglect of the required 
lateral safety distance of vehicles, many risks associated with compli-
cated driving behaviors (e.g., lane changing) cannot be fully described 
(Arun et al., 2021). c) Simply measuring the crash risk of vehicles on 
highways based on relative speeds is insufficient. For instance, in two 
different car-following scenarios, even if the following vehicles have the 
same relative velocity and distance to the preceding car (same TTC and 
DRAC), it does not mean that their crash risks are the same. In fact, the 
car-following scenario with a higher absolute velocity presents a higher 
crash risk compared to the other scenario (Mahmud et al., 2017). 

2.3. Safety potential field 

In physics, a field refers to the spatial distribution of a physical 
quantity. The central goal of safety potential field theory is to use a 

unified index to describe the spatial distribution of driving risks under 
“human, vehicle, road, and environmental effects”. Currently, the safety 
potential field model is mainly applied in autonomous driving scenarios. 
Early on, Wolf and Burdick (2008) applied potential functions to vehicle 
safety control, constructing the lane potential, road potential, car po-
tential, and velocity potential. Based on this approach, Li et al. (2020a) 
further incorporated acceleration and steering angle into the driving 
safety field model and proposed the potential field indicator (PFI) to 
characterize the comprehensive crash risk of vehicles. Furthermore, they 
have conducted extensive research in the domain of autonomous 
driving, such as car-following model (Li et al., 2019), lane-changing 
mechanisms (Li et al., 2020c), and the establishment of warning stra-
tegies (Li et al., 2020b). Some scholars have attempted to construct 
safety potential field models for human-driven scenarios (Mullakkal- 
Babu et al., 2020), among which Wang et al. (2015); Wang et al. (2016) 
proposed a unified driving safety field model that included static po-
tential fields, kinetic potential fields, and behavioral fields considering 
the interaction among humans, vehicles, and roads and enhanced the 
definition of virtual mass. Arun et al. (2023) proposed a physics- 
informed road user safety field theory, upon which they developed an 
SSM for rear-end crash risk. 

However, applying safety potential field theory to measure crash 
risks in work zones is associated with the following problems. a) 
Compared to conventional SSM-based models, safety potential field 
models often have many built-in parameters, and a large amount of data 
is required for parameter calibration when the models are applied to 
work zone scenarios. b) The overlapping of the safety potential fields of 
various objects necessitates the weight assigned to each object, and the 
determination of the weights can be highly difficult due to the multitude 
of objects in work zones. c) In typical human-driven scenarios, safety 
potential field models mostly consider driver factors but fail to fully 
consider the risk heterogeneity associated with road factors, such as the 
road grade. d) In previous studies, the risk charge of objects was often 
related to the weight of the target vehicle. However, it is challenging to 
obtain accurate vehicle weights in practical research. 

3. Methodology 

In this study, we propose a key risk-contributing feature identifica-
tion for work zones approach integrating improved safety potential field 
and machine learning techniques. Fig. 2 illustrates the overall approach 
framework which consists of two main parts, namely, crash risk mea-
surement and risk-contributing feature identification. The first part aims 
to apply the safety potential field to measure the crash risk in work 
zones. The second part focuses on using machine learning techniques to 
identify risk-contributing features. This part contains two phases, 
namely, dataset preprocessing and risk-contributing feature learning. 
The goal of dataset preprocessing is to construct a dataset suited for 
supervised machine learning, which includes the steps of sample split-
ting, labeling, and feature extraction. In phase of risk-contributing 
feature learning, we combined machine learning techniques with 
resampling algorithms and model interpretation methods to identify key 
risk-contributing features. 

3.1. Crash risk measurement 

3.1.1. Work zone crash risk field 
To comprehensively identify crash risks within work zones, an 

improved safety potential field model, termed the Work-Zone Crash Risk 
Field (WCRF), is proposed. In work zone scenarios, objects are catego-
rized into two types: target vehicles and interactive objects. The target 
vehicle is defined as the observed vehicle for which the crash risk is 
being measured. To reduce computational efforts, this study focuses 
solely on the crash risks between each target vehicle and objects in its 
front or side. Thus, interactive objects are limited to those positioned 
either in front of or to the side of the target vehicle, which includes 

B. Wang et al.                                                                                                                                                                                                                                   



Accident Analysis and Prevention 194 (2024) 107361

4

surrounding vehicles, guardrails, and traffic cones. In addition, each 
interactive object is not treated as a point, but an entity with a unique 
shape (as illustrated in Fig. 3). We define the virtual crash point as the 
point on the contour of the interactive object with the maximum field 
intensity, which is most likely the position for a potential crash to occur. 

The target vehicle serves as the field source for the WCRF, and time is 
used as the primary indicator for field intensity, describing the potential 
distribution of crash risk in the space surrounding the vehicle. The field 
intensity E is solely determined by factors such as the distance from the 
vehicle, the attributes of the target vehicle (such as velocity and type), 
and the attributes of the road (such as grade). The field force Fi repre-
sents the crash risk between the target vehicle and the interactive object 
i, and it is related to the field intensity E and the risk charge Qi of 
interactive object i. The maximum field force FV represents the driving 

risk of the vehicle. The basic relationship between the WCRF field force 
F, field intensity E, and risk charge Q is expressed in Eq. (1). 

FV = max{Fi} = max{QiE}

The core of the potential field model is the field intensity formula, 
which depends on the distribution characteristics of the crash risk. When 
modeling the field intensity, three issues need to be considered: the in-
fluence of distance on the field intensity, the anisotropy of the field in-
tensity, and the key factors influencing the field intensity. Furthermore, 
to more accurately describe the interaction relationship between the 
target vehicle and other objects, the target vehicle is conceptualized as a 
rectangle. Considering the anisotropy of crash risk and focusing only on 
the crash risk of the target vehicle with front and side interactive objects, 

Fig. 2. Framework of key risk-contributing feature identification for work zones.  

Fig. 3. Example work-zone crash risk field.  
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the distribution of the potential field proposed in this study is wedge- 
shaped. This shape is similar to that of the vehicle potential field dis-
cussed in previous studies (Wolf and Burdick, 2008). The improved field 
intensity formula proposed in this study is shown in Eq. (2), where the 
field intensity model E consists of two parts: the equivalent time-based 
distance T* and the vehicle–road combination function η. 

E =
η

T∗
(2) 

In addition, it is necessary to determine the risk threshold of the 
maximum field force FV . Compared to WCRF, TTC and DRAC are highly 
interpretable SSMs, and their conflict thresholds can be theoretically 
determined. The threshold of TTC is related to the driver’s reaction time 
(Mahmud et al., 2017). Additionally, the conflict threshold of DRAC can 
be determined based on the maximum possible deceleration (AASHTO, 
2018). In this study, TTC and DRAC are employed to initially identify 
vehicles that are involved in conflicts (in this study, these vehicles are 
referred to as high-risk vehicles). Subsequently, the minimum FV among 
these conflicting vehicles is computed as the risk threshold. To obtain an 
adequate number of high-risk samples, this study, based on previous 
research, selects a conflict threshold of 5 s for TTC (Xin et al., 2021) and 
1.4 m/s2 for DRAC (Chen et al., 2019). Furthermore, to facilitate sub-
sequent data analysis, 1/TTC is used in place of TTC, meaning that the 
threshold for 1/TTC is set at 0.2 s− 1. 

3.1.2. Model structure 
In this section, the WCRF model and the formulas for the main model 

parameters are introduced. The final model for the WCRF force F is 
shown in Eq. (3), where the three main parameters are the equivalent 
time-based distance T*, the vehicle–road combination function η, and 
the risk charge of interactive object Q. The methods for calculating the 
three main parameters (T*, η and Q) will be introduced in detail later. 

F = Q
η

T∗
= e0.125(v− vo)cosφ δvMI

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
y2 + δ2x2

√ (3)  

where (x, y) are the position of the interactive object’s virtual crash 
point in the target vehicle’s coordinate system. δ is the equivalent 
parameter. M is the vehicle attribute parameter, and I is the road attri-
bute parameter. v is the vehicle velocity (m/s). vo represents the velocity 
of the interactive object, and φ is the equivalent angle between the 
interactive object and the direction of vehicle travel.  

(1) The equivalent time-based distance 

The time required for a vehicle to reach a specified location is known 
as the time-based distance, which can be used directly to measure crash 
risk (Shbeeb, 2000). The concept of equivalent time-distance T* is 
introduced to address the anisotropy issue. When interactive object A is 
directly ahead in a vehicle’s line of travel and interactive object B is not, 
assuming they both present equal crash risks, the time-distance from the 
vehicle to object A equates to the equivalent time-distance from the 
vehicle to object B. The coordinates of interactive objects A and B in the 
vehicle’s coordinate system are (x,0) and (0, y), respectively. Based on 
the vehicle’s velocity v, the equivalent time-distance of interactive ob-
ject B can be obtained as T*

B = TA = x/v. Here, we assume the existence 
of a virtual velocity vy = δv along the y-axis of the vehicle, such that 
T*

B = y/δv. Any point (x, y) in the space around the vehicle satisfies Eq. 
(4), and T* can be expressed by Eq. (5). To facilitate application in the 
Frenet coordinate system used for roads, coordinate transformation can 
be performed according to Eq. (6). 
{

x/v = T∗cosθ
y/δv = T∗sinθ (4)  

T∗ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
y2 + δ2x2

√

δv
(5)  

[x, y, 1] = [s, d, 1]

⎡

⎣
1 0 0
0 1 0
s0 d0 1

⎤

⎦

⎡

⎣
cosθ sinθ 0
− sinθ cosθ 0

0 0 1

⎤

⎦ (6)  

where (s, d) are the point coordinates of the Frenet coordinate system 
and (s0, d0) are the vehicle’s center coordinates. θ is the clockwise angle 
between the vehicle’s driving direction and the S-axis. 

The equivalent parameter δ depends on the ratio of the lateral and 
longitudinal safety distances. According to previous research (Gunay, 
2007; Budhkar and Maurya, 2017), the relationship between the lateral 
safety distance ys and vehicle speed v can be expressed as ys =

0.02214v + 1.2. Combined with the research on the threshold of time to 
accident (TA), the relationship between the longitudinal safety distance 
xs and vehicle speed v can be expressed as xs = 1.5v (Shbeeb, 2000). 
Therefore, the equivalent parameter δ can be calculated as shown in Eq. 
(7). 

δ = 0.01476+ 0.8v− 1 (7)    

(2) The vehicle–road combination function 

Braking performance is one of the important factors that affects crash 
risk and is closely related to vehicle and road attributes. Previous 
research on the stopping sight distance (SSD) has extensively explored 
the effects of vehicle and road attributes on vehicle braking performance 
and has achieved valuable results (Samson et al., 2022). Therefore, in 
this study, the impact of different attributes (vehicle attributes M and 
road attributes I) on the SSD is assessed, and a vehicle–road combination 
function η is established to determine the intensity of the WCRF, as 
shown in Eq.(8). The standard value of η is 1 when a car is traveling on a 
flat road. 

η = MI (8) 

Vehicle type is the most prominent vehicle attribute, and previous 
SSD research categorized vehicles into two types: trucks and cars 
(AASHTO, 2018). The Virginia Code - Tables of Speed and Stopping 
Distances (46.2–880) specifies the SSDs for these two types of vehicles 
(Code of Virginia, 2021). The vehicle parameter for cars is MCar = 1, and 
that for trucks MTruck is the ratio of the truck’s SSD to the car’s SSD. A 
further regression analysis was performed on the MTruck parameter, 
resulting in Eq. (9), with a coefficient of determination R2 of 0.9952 and 
a root mean square error (RMSE) of 0.0029. 

MTruck = 0.935v0.07269 (9) 

Road grade is one of the important factors that influences vehicle 
braking. Based on the SSD calculation method for different grades pro-
vided by the American Association of State Highway and Transportation 
Officials (AASHTO, 2018) and assuming a driver reaction time of 2.5 s 
and a vehicle braking deceleration rate of 3.4 m/s2, the SSD formula 
shown in Eq. (10) is established. The road attribute parameter I is the 
ratio of the SSD at different road grades G to the SSD on a flat road (G =

0), as shown in Eq. (11). 

SSD = 2.502v+
v2

(6.7926 + 19.6 ∗ G)
(10)  

I =
SSD

SSDG=0
(11)    

(3) The risk charge of an interactive object 

Relative velocity is an important parameter for conventional SSMs 

B. Wang et al.                                                                                                                                                                                                                                   



Accident Analysis and Prevention 194 (2024) 107361

6

such as TTC and DRAC, as it can better measure crash risk. Therefore, a 
method for calculating the interactive object risk charge Q based on the 
relative velocity between an interactive object and a vehicle is proposed, 
as shown in Eqs. (12) and (13). Notably, this study mainly focuses on the 
likelihood of a crash, hence the attributes of the interactive objects only 
include their spatial position and speed. Both the guardrail and the 
traffic cone have zero speed. The speed of the surrounding vehicles is 
based on the scalar value of their actual speed, while the speeds of both 
the guardrails and traffic cones are zero. Meanwhile, the position of the 
virtual crash point is used as the spatial position of the interactive object. 
Moreover, the greater the positive speed difference between the target 
vehicle and the interactive object, the higher the likelihood of a crash, 
and the higher the risk charge as well. When the speed difference be-
tween a vehicle and an interactive object is 0, Q = 1, and when the 
speed difference is 5.56 m/s (20 km/h), Q = 2. 

Q = e0.125(v− vo)cosφ (12)  

φ = arctan
y
δx

(13) 

To better illustrate how to utilize the WCRF force F to measure the 
crash risk of a target vehicle with different interactive objects in the 
work zone, we exemplify using a typical scenario illustrated in Fig. 3. In 
this scenario, two cars are driving on a flat road with a guardrail on the 
left and a traffic cone on the right. We select the following vehicle as the 
target vehicle. There are three interactive objects: the preceding vehicle 
(surrounding vehicles), traffic cones, and guardrails. Firstly, using Eqs. 
(2), (4)-(11), we can determine the potential field distribution formed by 
the target vehicle. Subsequently, the virtual crash points of the three 
interactive objects can be identified based on field intensity E. Building 
on this, the risk charge Q for the three interactive objects can be 
determined using Eqs. (12) and (13). Finally, using Eq. (3), the WCRF 
force F exerted on the target vehicle by the three interactive objects are 
deduced. In this example, the field forces of the surrounding vehicle, 
guardrails, and traffic cones are F1 = 1.25, F2 = 1.21, and F3 = 0.23, 
respectively. According to Eq. (1), the FV of the vehicle is determined to 
be 1.25. 

3.1.3. Improvements 
Compared with the field-based models proposed in previous studies 

(Wang et al., 2016; Li et al., 2020b), the improvements of the WCRF 
model are made as follows:  

1) Field source: Previous scholars have proposed the use of interactive 
objects as field sources in safety potential fields, as shown in Fig. 4 
(a). While this method effectively illustrates the distribution of 
collision risks on the road, applying it directly to work zone scenarios 
faces the following challenges: a) difficulty in determining weights 

for fields generated by different interactive objects, b) numerous 
undetermined parameters require calibration, and c) potential fields 
for each interactive object must be computed separately. Drawing 
inspiration from the concept that forces are mutual, the WCRF model 
designates the target vehicle as the exclusive field source, as pre-
sented in Fig. 4(b). In contrast to previous model, this adjustment in 
the field source negates the need to determine weights and sub-
stantially reduces model parameters and computational demands.  

2) Risk quantification: In previous studies, the risk field forces of 
multiple interactive objects were often superimposed into a 
comprehensive field force to represent the risk state of vehicles. This 
approach might be highly susceptible to traffic flow influences. For 
instance, in multi-vehicle scenarios, the comprehensive field force 
might be greater even if each vehicle poses a low risk, compared to 
scenarios with fewer vehicles but higher risks. However, the 
maximum safety field force FV can more effectively represent the 
vehicle’s extreme crash risks. Therefore, in this study, only the FV is 
used to represent the crash risk of the target vehicle. Although this 
approach might result in overlooking some high-risk vehicles when 
considered as interactive objects, it can accurately identify vehicles 
that have a high risk of crash with objects in front or to the side of 
them. This provides an effective SSM for measuring crash risk in the 
work zone. 

3.2. Risk-contributing feature identification 

3.2.1. Dataset preprocessing  

(1) Scenario splitting 

To explore the impact of traffic features on crash risk, it is necessary 
to split the original data extracted frame-by-frame from a video. Uti-
lizing a fixed time interval for data splitting can potentially cause the 
loss of correlation between features and sample labels, especially for 
infrequent high-risk samples (Polyzotis et al., 2017). However, 
employing a sliding window approach can help the model identify the 
associations between neighboring statistical units, thereby improving its 
performance (Gertz et al., 2020). To a certain degree, integrating the 
sliding window with a machine learning algorithm can alleviate issues 
related to extreme sample imbalance (Chiong et al., 2022). Relevant 
research has confirmed that traffic datasets collected at 30-second in-
tervals are superior to other related datasets in machine learning (Hu 
et al., 2022). Moreover, a window step that is too small can lead to 
overfitting, while a step that is too large can cause high-risk samples to 
be incorrectly split. Considering that the passing time for most vehicles 
is approximately 10 s, the window step size should ideally be less than 
10 s. Therefore, a sliding window method is applied to split the original 
data into scenario datasets. The size of the sliding window is 30 s, with a 

Fig. 4. Conceptual diagram of improvements to the safety potential field.  
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step of 3 s. That is, each scenario contains all the information observed 
within 30 s.  

(2) Scenario labeling 

Whether there are high-risk interactions within the time window of 
the scenarios is used as the criterion for assessing their risk level. Based 
on the WCRF force FV and its risk thresholds, interactions between ve-
hicles and surrounding objects can be classified into two groups, namely, 
high-risk and low-risk interactions. Accordingly, the scenarios contain-
ing high-risk interactions are labeled with high-risk, while the 
remainder are labeled with low-risk. 

In this study, TTC and DRAC are employed to determine the risk 
threshold for the WCRF field force FV . First, high-risk vehicles are 
initially identified using the known thresholds of SSMs. Then, the FV of 
each vehicle is calculated, and the smallest FV is selected as the risk 
threshold for the WCRF field force. Since TTC and DRAC are highly 
interpretable SSMs, they are chosen as the SSMs for the initial identifi-
cation of high-risk vehicles. The threshold of TTC is related to the 
driver’s reaction time (Mahmud et al., 2017), while the conflict 
threshold of DRAC is dependent on the maximum possible deceleration 
(AASHTO, 2018). Based on previous research, we select a conflict 
threshold of 5 s for TTC (Xin et al., 2021) and 1.4 m/s2 for DRAC (Chen 
et al., 2019). Furthermore, to facilitate subsequent data analysis, 1/TTC 
is used in place of TTC, meaning that the threshold for 1/TTC is set at 
0.2 s− 1.  

(3) Scenario features 

In response to the requirements for developing traffic management 
strategies, the traffic features of scenario samples are determined, as 
shown in Table 1, based on common traffic control strategies in work 
zones. These strategies include speed limits (Nnaji et al., 2020), early 
lane merging (Almallah et al., 2021), and the opening of emergency 
lanes (La Torre et al., 2017). The speed limit can effectively regulate the 
speed of travel in different lanes. Installing speed-recording cameras can 
improve the effectiveness of speed limit control and reduce the number 
of speeding vehicles. Early lane merging can effectively reduce the 
number of vehicles in closed lanes. Additionally, opening emergency 
lanes when necessary can reduce the number of vehicles in other lanes. 

3.2.2. Risk-contributing feature learning 
XGBoost (eXtreme Gradient Boosting) is an ensemble learning al-

gorithm based on decision trees that provides excellent performance and 
flexibility in solving supervised learning problems (Chen and Guestrin, 
2016). Previous studies have confirmed that XGBoost usually performs 
well in traffic feature data mining and crash risk prediction (Shi et al., 
2019). Furthermore, considering the imbalance between high-risk and 
low-risk samples in a dataset can enhance XGBoost model training. A 
resampling algorithm can effectively improve the problem of sample 
imbalance. SMOTEENN involves a combination of oversampling and 

undersampling and is based on the synthetic minority oversampling 
technique (SMOTE) and edited nearest neighbor (ENN) technique 
(Chawla et al., 2002). SMOTEENN can reduce the number of majority- 
class samples and increase the number of minority-class samples so 
that the model classification ability can be improved while maintaining 
a data balance (B. Wang et al., 2022). 

In this study, a traffic risk classification model that combines the 
XGBoost classifier and the SMOTEENN resampling algorithm is devel-
oped. First, the dataset is divided into training and test sets at an 8:2 
ratio based on previous research experience (Qi et al., 2022). Second, 
the training set is resampled using SMOTEENN. Subsequently, the 
XGBoost model is trained using a balanced training set with 5-fold cross- 
validation (Wang et al., 2020). The model hyperparameters are opti-
mized using the grid search method. Finally, the trained model is eval-
uated using the test set. 

In addition, the SHAP (SHapley Additive exPlanations) method is 
applied to interpret the trained model. SHAP is a popular method for 
explaining feature importance; it simulates the contribution of each 
feature to model predictions and calculates the Shapley value of each 
feature (Lundberg and Lee, 2017). The Shapley value is used in game 
theory to measure each player’s contribution to the payoff of a coop-
erative game, ensuring that each feature’s contribution to the model 
prediction is unique. SHAP can explain the contribution of each feature 
to the prediction results and the interactions among features. 

4. Data collection 

4.1. Data sources 

The data for this study are from the S4 highway in China, which has 3 
lanes in each direction, and the designed speed of travel is 120 km/h 
(Fig. 5). The data collected include surveillance video and highway 
design drawings. Four surveillance videos are selected as case studies: 
Case AW (road segment A with a work zone), Case AN (road segment A 
without a work zone), Case BW (road segment B with a work zone), and 
Case BN (road segment B without a work zone). In the two cases of AW 
and BW, the work zones are located in the innermost lane. The traffic 
flows in the four cases are generally similar. Each video, with a resolu-
tion of 1920 pixels × 1080 pixels and a frame rate of 24 frames/second, 
is 2 h long. The statistical descriptions of the four case studies are shown 
in Table 2. In the table, “car” refers to vehicles that have no more than 
two axles or no more than four wheels (e.g., private cars and vans), 
while “truck” refers to vehicles that have more than two axles or more 
than four wheels (e.g., trucks and buses). 

4.2. Real-time trajectory extraction 

In this study, a framework was developed using machine vision al-
gorithms to extract vehicle trajectories from surveillance videos for 
crash risk analysis, as shown in Fig. 6. The framework consists of three 
main components: 1) vehicle detection and tracking, 2) camera cali-
bration and coordinate transformation, and 3) the extraction of vehicle 
geometry information. The WCRF force can be calculated using Eq. (3) 
based on the extracted trajectory and vehicle geometry information. 

1) Vehicle detection and tracking: The R-CNN (Region-based Con-
volutional Neural Network) and YOLO (You Only Look Once) algo-
rithms are popular in vehicle detection (Kim et al., 2020). An R-CNN 
is a “two-stage” algorithm with high accuracy but a slow speed, and 
YOLO uses a single network for fast detection and easy deployment 
(Maity et al., 2021). To track vehicle trajectories, object detection 
needs to be combined with multiobject tracking (MOT). DeepSORT is 
a classic MOT algorithm, and StrongSORT combines it with 
Gaussian-smoothed interpolation for enhanced accuracy and speed 
(Du et al., 2023). Therefore, YOLOv5 and StrongSORT were used for 
real-time trajectory data extraction. 

Table 1 
Introduction to the traffic features of scenarios.  

Risk Feature Unit Lane Code 

Total number of vehicles vehicle Innermost lane N1 
Middle lane N2 
Outermost lane N3 

Total number of speeding vehicles vehicle Innermost lane S1 
Middle lane S2 
Outermost lane S3 

Maximum speed m/s− 1 Innermost lane X1 
Middle lane X2 
Outermost lane X3 

Mean speed m/s− 1 Innermost lane A1 
Middle lane A2 
Outermost lane A3  
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2) Camera calibration and coordinate system transformation: 
Accurately estimating surveillance camera parameters is crucial for 
coordinate transformation. Due to the lack of reference objects on 
curved roads, the ‘VWL’ (one vanishing point, known width and 
length) method is used for camera parameter calibration (Kanhere 
and Birchfield, 2010; Wang et al., 2007); in this approach, a van-
ishing point is determined based on road markings, and camera pa-
rameters are obtained based on the known length of road markings 
and a set of parallel markings with known spacing (Eqs. (S1)-(S5) in 
Supplementary Material). Upon obtaining the camera parameters, 
the trajectory coordinates in the world coordinate system are ob-
tained using Eq. (S6) in Supplementary Material. Finally, based on 
the road markings as a reference, the trajectory coordinates in the 
Frenet coordinate system of the road are obtained. 

3) Extraction of vehicle geometry information: Vehicle geometry in-
formation, such as length and width, is crucial for traffic risk mea-
surement. In this study, the method proposed by Dubská et al. (2014) 
is improved, and a method that utilizes background subtraction and 
YOLO vehicle detection to automatically fit the 3D shapes of vehicles 
is introduced. The program identifies the outer contour of vehicles 
using a Gaussian mixed-background subtraction algorithm and ex-
tracts the vehicle geometry information using a coordinate trans-
formation matrix obtained from camera calibration. The final value 

Fig. 5. Study case and area.  

Table 2 
Descriptive statistics of data collected from the case studies.  

Indicator Case AW Case AN Case BW Case BN 

Video recording 
date 

2022-11-30 2022-12-05 2022-12-05 2022-12-08 

Time period 09:00–11:00 09:00–11:00 14:00–16:00 14:00–16:00 
Work zone lane Innermost 

lane 
/ Innermost 

lane 
/ 

Road grade − 2.64 % − 2.64 % 0.9 % 0.9 % 
Total number of 

vehicles 
534 501 604 557 

Total number of 
cars 

337 317 371 414 

Total number of 
trucks 

197 184 233 143 

Innermost lane 
vehicle count 

134 144 139 101 

Middle lane 
vehicle count 

244 216 203 172 

Outermost lane 
vehicle count 

156 141 262 284 

Note: A vehicle’s lane is determined based on its position upon entering the 
transition area. 

Fig. 6. A framework for trajectory data extraction and crash risk measurement based on machine vision.  
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is the mean of the geometry information for the 20 frames before the 
vehicle leaves the monitoring area. 

In addition, data filtering is conducted to remove noise and enhance 
the accuracy of trajectory extraction. As an effective and efficient data 
filtering method which has recommended in previous studies (Ven-
thuruthiyil and Chunchu, 2018), Savitzky–Golay filter is used to clean 
the vehicle trajectory data. 

5. Results and discussion 

5.1. Models 

5.1.1. Threshold determination 
The risk threshold serves as an important basis for risk identification 

and sample labeling. According to the method described in Section 
3.1.1, a total of 27 high-risk vehicles are identified using 1/TTC and 
DRAC. Based on the maximum WCRF force FV of these vehicles, the 
threshold of FV is determined to be 1.9. Fig. 7 illustrates the results of 
identifying high-risk vehicles using DRAC, 1/TTC and FV , with each 
point representing a vehicle. Using the WCRF force FV, a total of 57 high- 
risk vehicles are identified, and the numbers of high-risk vehicles 
identified using 1/TTC and DRAC are 21 and 26, respectively. Compared 
to 1/TTC and DRAC, WCRF displays a higher sensitivity for identifying 
high-risk vehicles. 

5.1.2. Measure comparison 
To explain the differences among different SSMs in identifying high- 

risk vehicles, we further analyze the key indicators at the timestamp of 
maximum risk for all vehicles. The SSMs adopted as baselines for com-
parison include the potential field indicator (PFI) (Li et al., 2019; Li 
et al., 2020a), 1/TTC, and DRAC. Herein, we assume that the mass of 
cars is 2 tons and that of trucks is 7 tons when using PFI. The key in-
dicators include the vehicle type, speed, distance, and motion directions 
of the target vehicle and its interactive object. Fig. 8 displays six parallel 
coordinate plots, each illustrating results from different SSMs used to 
identify high-risk vehicles. Within these plots, each line represents a 
state in which a target vehicle interacts most dangerously with sur-
rounding vehicles. Additionally, we have highlighted some typical ex-
amples for clarity. 

From Fig. 8, we find that:  

a) Fig. 8(a) illustrates the result of high-risk vehicle identification using 
the PFI. Two types of low-risk scenarios are observed to be often 
misidentified as high-risk. The typical sample A shows one type 

where the speed of the following vehicle is much slower than that of 
the preceding vehicle. On the other hand, the typical sample B rep-
resents the other type, where vehicles are spaced significantly apart 
laterally. The misidentifications can be attributed to certain aspects 
of PFI: (i) it does not fully account for the speed difference between 
vehicles; (ii) it might not give enough weight to lateral safety dis-
tances; and (iii) it tends to emphasize mass attributes, resulting in 
scenarios involving trucks having a generally higher PFI than those 
without trucks. In essence, while the PFI has been proven effective in 
comparing the crash risk of a single target vehicle with different 
interactive object, it is less suitable for multiple different target 
vehicles.  

b) In Fig. 8(b), the typical sample C can be identified based on TTC and 
the WCRF force but not with DRAC. This indicates that when the 
relative speed of travel is low, DRAC demonstrates lower sensitivity 
to high-risk interactions with vehicles in close proximity.  

c) In Fig. 8(c), the typical sample D can be identified with DRAC and the 
WCRF force but not based on TTC and PFI. This indicates that when 
the distance is large, both TTC and PFI demonstrate lower sensitivity 
to high-risk interactions involving vehicles traveling at high relative 
speeds.  

d) In the process of measuring crash risk, TTC and DRAC do not 
consider factors such as road grade and vehicle type. Therefore, in 
Eq. (3), we set the vehicle attribute parameter M and the road 
attribute parameter I to 1.00 to more effectively compare these SSMs, 
as shown in Fig. 8(d). As for the typical sample E, although the dis-
tance to the interaction object is short, the vehicle is not identified as 
a high-risk vehicle by DRAC and TTC due to its low Δv. As for the 
typical sample F, despite the high speed of travel and close distance 
between the vehicle and object, the vehicle is not identified as a high- 
risk vehicle due to the insensitivity of DRAC and TTC to the lateral 
safety distance. However, the WCRF is constructed based on the 
equivalent time-based distance, and it successfully overcomes these 
limitations. As a result, it proves to be more suitable for measuring 
crash risks in complex traffic environments, such as work zones.  

e) Fig. 8(e) displays the high-risk vehicle identification results by WCRF 
force, considering the vehicle attribute parameter M. In comparison 
to Fig. 8(d), there are more high-risk vehicles identified by the WCRF 
force, such as trucks with insufficient following safety distance rep-
resented by the typical sample G. Fig. 8(f) shows the final high-risk 
vehicle identification results using the WCRF force. Since the effect 
of road grade is considered, more high-risk vehicles are identified, 
such as vehicles with insufficient following safety distance in the 
downhill road segments represented by typical sample H. By 

Fig. 7. Comparison of high-risk vehicle identification results based on 1/TTC, DRAC, and FV .  
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considering vehicle types and road grade, the WCRF force can more 
accurately reflect the crash risk of vehicles than can other SSMs. 

5.2. Risk analysis 

5.2.1. Exploratory data analysis 
To understand the impact of setting up a work zone on the spatial 

distribution of crash risks, the WDRF FV of each vehicle in every frame of 
the collected videos are calculated. In case studies, both work zones are 
located in the innermost lane, where the crash risk between the vehicles 
and the guardrail is extremely low. Therefore, in this section, the anal-
ysis is focused on two parts: (a) the distribution of virtual crash points on 
the traffic cones, and (b) the distribution of crash risks in each lane. 

Fig. 9 shows the distribution of virtual crash points between each 

Fig. 8. Parallel coordinates plots of high-risk vehicle identification results. The horizontal axis represents vehicle status indicators, while the vertical axis shows the 
corresponding values for each indicator. Herein, the “Type” refers to vehicle-pairs between the target vehicle and its interactive vehicle. For example, “C-T” means a 
pair between a target vehicle which is a “Car” and its interactive vehicle which is a “Truck”. θT and θO are the movement directions of the target vehicle and the 
interactive vehicle, respectively. Δv, Δx and Δy represent the relative speed and the lateral and longitudinal distances between the target vehicle and the interactive 
vehicle, respectively. 

Fig. 9. Spatial distribution of virtual crash points for traffic cones.  

B. Wang et al.                                                                                                                                                                                                                                   



Accident Analysis and Prevention 194 (2024) 107361

11

vehicle (from innermost lane) and the traffic cones. Each bubble in-
dicates a virtual crash point with the highest crash risk as a vehicle 
passes the transition area, and the size of bubble represents the strength 
the WCRF force. We can observe that these virtual crash points are 
mainly distributed at the head and tail of the transition area and the 
crash risks at the tail are always higher. This means traffic cones might 
not be detected by some drivers earlier, making it less likely for those 
vehicles to decelerate or change lanes earlier, and those vehicles will 
inevitably have a higher crash risk with traffic cones when changing lane 
at the tail of the transition area. 

Furthermore, the road area was partitioned into grids, where each 
grid unit measured 3.0 m along the S-axis and 0.5 m along the D-axis. 
Fig. 10 illustrates the heatmap depicting the maximum FV within each 
grid. The color in the figure represents the maximum WCRF force of all 
vehicles at the selected location, with lighter colors indicating a higher 
crash risk. It intuitively reflects the spatial distribution of crash risk for 
four cases. By comparing the four cases, it can be observed that the 
presence of work zones noticeably increases the crash risk in road seg-
ments. However, there is an obvious difference in the spatial distribution 
of crash risks in the transition areas for Cases AW and BW. Specifically, 
most crash risks for Case AW plot in the middle lane, and in Case BW, the 
risks are distributed in the middle and outermost lanes more evenly. 

Furthermore, to investigate the reasons for the differences in the 
spatial distribution of crash risks, we perform a statistical analysis based 
on the lanes each vehicle occupies before entering the road segment. 
This analysis includes the WCRF force FV , the number of vehicles 
changing lanes, and the number of high-risk vehicles. Table 3 presents 
the statistical results for the four cases, revealing the following key 
findings.  

a) For the cases in which there are no work zones (Cases AN and BN), 
according to the mean values of FV, the overall crash risk of the ve-
hicles in the three lanes is ranked in the following order: innermost 
> middle > outermost. This trend may be linked to the speed limits 
for each lane: innermost lane (120 ~ 100 km/h), middle lane (100 ~ 
80 km/h), and outermost lane (100 ~ 60 km/h).  

b) In the cases in which work zones are established (Cases AW and BW), 
according to the mean values of FV, the overall crash risk of the ve-
hicles in the middle lane is the highest. This suggests that estab-
lishing work zones in the innermost lane has the greatest impact on 
the safety status of the middle lane. This finding is consistent with 
previous research results (Meng and Weng, 2011). Notably, an 
important difference between Cases BW and AW is that in BW, the 
vehicles in the outermost lane also experience a substantial increase 
in crash risk.  

c) By comparing the four cases, we find that the increase in high-risk 
vehicles may be related to vehicles changing lanes. In terms of the 
total numbers of lane-changing vehicles and high-risk vehicles, the 

ranking is the same for all four cases: BW > AW > BN > AN. This 
suggests that lane changing might complicate traffic and heighten 
the crash risk. Furthermore, combined with video analysis, of the 
high-risk vehicles, 47 vehicles (82.45 %) participate in or are 
affected by lane changing; notably, either they are lane-changing 
vehicles or they are involved in high-risk interactions with lane- 
changing vehicles. This further indicates that vehicle lane changes 
significantly increase the collision risk in work zones.  

d) By comparing road segments A and B, we found that for road 
segment B, many vehicles in the middle lane generally move to the 
outermost lane. This behavior is likely influenced by the existence of 
the nearby intersection exit and the service area ahead on road B. 
Due to the presence of a work zone, many drivers planning to exit the 
highway choose to change lanes at this location, moving to the 
outermost lane. This also explains why in Case BW, the crash risk for 
vehicles in the outermost lane markedly increased. 

5.2.2. Analysis of key risk-contributing features  

(1) Model performance evaluation 

The XGBoost model is trained using the resampled datasets for Cases 
AW and BW, and the model hyperparameters are optimized as shown in 
Supplementary Material Figs. S1 and S2 and Table S1. The performance 
of the trained models is evaluated based on the test set, and the results 
are summarized in Table 4. The performance of the models developed 
based on the data from Cases AW and BW is excellent, with accuracy, 
area under the curve (AUC), and recall values all exceeding 0.90. This 
indicates that the models are capable of accurately distinguishing among 
different levels of risk based on the traffic features of the scenario 
samples. Additionally, the precision of the two models is comparatively 
low compared to the recall values at 0.870 and 0.774, respectively. It is 
possible that the lower precision of models is a result of high-risk traffic 
features being present in some low-risk scenario samples. However, due 
to the cautious driving behavior of the drivers in those scenario samples, 
the WCRF force may not exceed the risk threshold.  

(2) SHAP value analysis 

Fig. 11 demonstrates the local explanations of the model using SHAP 
values. Traffic features are plotted on the vertical axis in order of their 
importance, with more important features placed higher. Each point on 
the horizontal axis represents a sample, and the color represents the 
feature value, where red indicates a large feature value and blue in-
dicates a small feature value. When the SHAP value is positive, the 
likelihood of a sample being classified as high-risk increases, and a 
negative SHAP value indicates a decrease in the likelihood of the sample 
being classified as high-risk. 

Fig. 10. Spatial distribution heatmap of crash risk.  
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According to Fig. 11, for Case AW, the three most important features 
are N2 (number of vehicles in the middle lane), X2 (maximum speed of 
vehicles in the middle lane), and A2 (mean speed of vehicles in the 
middle lane), all associated with the middle lane. On the other hand, for 
Case BW, the three most important features are N3 (number of vehicles 
in the outermost lane), A3 (mean speed of vehicles in the outermost 
lane), and X2, which are associated with the outermost and middle 

lanes. Notably, the three most important features in Cases AW and BW 
are associated with lanes with a high concentration of high-risk vehicles 
(Table 3). To a certain extent, this finding validates the proposed key 
risk feature identification method in this study. 

In Cases AW and BW, N3 (number of vehicles in the outermost lane) 
makes a positive contribution to high crash risk. This indicates that 
many vehicles are in the outermost lane in both cases’ high-risk sce-
narios. However, X3 (maximum speed of vehicles in the outermost lane) 
and A3 display noteworthy heterogeneity in their contribution to high- 
risk level scenarios. Specifically, in Case AW, X3 makes a negative 
contribution to high crash risk, while A3 has a positive impact, but in 
Case BW, the contributions of these two features are reversed. This 
inconsistency may be related to the vehicles changing from the middle 
lane to the outermost lane. When a vehicle changes lanes, it tends to 
accelerate to maintain a distance from its following vehicle in the target 

Table 3 
Statistical results for vehicles from different lanes.  

Case Lane WCRF force FV Lane-changing vehicles High- risk vehicles 

Max Mean S.D. Number Proportion Number Proportion 

AW Innermost  2.49  0.58  0.31 134  100.00 % 3  2.24 % 
Middle  3.92  0.78  0.48 12  4.92 % 14  5.74 % 
Outermost  1.13  0.31  0.30 1  0.64 % 0  0.00 % 

AN Innermost  1.75  0.49  0.38 0  0.00 % 0  0.00 % 
Middle  1.83  0.40  0.35 0  0.00 % 0  0.00 % 
Outermost  1.73  0.35  0.41 0  0.00 % 0  0.00 % 

BW Innermost  2.73  0.61  0.33 139  100.00 % 2  1.44 % 
Middle  7.66  0.71  0.69 90  44.33 % 14  6.90 % 
Outermost  4.79  0.65  0.62 6  2.29 % 20  7.63 % 

BN Innermost  3.00  0.53  0.56 1  0.99 % 1  0.99 % 
Middle  1.97  0.47  0.22 33  19.19 % 1  0.58 % 
Outermost  2.52  0.44  0.39 2  0.70 % 2  0.70 %  

Table 4 
Results of classification performance evaluation.  

Data source Accuracy Recall Precision F1 score AUC 

Case AW  0.992  0.952  0.870  0.909  0.973 
Case BW  0.962  0.923  0.774  0.842  0.944  

Fig. 11. SHAP summary plot.  
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lane. Meanwhile, the following vehicle in the target lane usually slows to 
avoid a crash with the lane-changing vehicle (Hidas, 2002). This means 
that when there is an increasing number of vehicles changing lane to the 
outermost lane, X3 tends to be higher, while A3 tends to be lower. As 
shown in Table 3, in Cases AW and BW, 4.92 % and 44.33 % of the 
vehicles in the middle lane change lane to the outermost lane. Thus, lane 
changing maneuvers might be a main cause of the heterogeneity in the 
contribution to high-risk level scenarios between X3 and A3. Addition-
ally, from the collected video footage, we observed a high-risk situation 
where the vehicle in the middle lane was forced to change lanes to the 
outermost lane to avoid crashes with the vehicle changing lanes from the 
innermost lane. In Case BW, a total of 20 vehicles in the middle lane 
were involved in this high-risk situation, and Fig. 12 illustrates one of 
them as an example. This finding reveals how lane changing maneuvers 
might contribute to the crash risk of the outermost lane in a work zone. 

In Fig. 11(a), we can determine that the key risk-contributing fea-
tures for Case AW are the N2, X2, A2, X3, and S1 (number of speeding 
vehicles in the innermost lane), among which the N2, A2, and S1 make a 
positive contribution to high crash risk. The findings indicate that in 
scenario AW, high-risk scenarios exhibit the following characteristics 
when compared to low-risk scenarios: a) increased traffic flow in the 
middle lane; b) higher speeds observed in the middle lane; and c) more 
speeding vehicles entering the transition area from the innermost lane. 
Additionally, X2 only has a positive contribution to high crash risk when 
its value is high, but S2 (number of speeding vehicles in the middle lane) 
makes only a small contribution with no discernible regularity. Mean-
while, only three of Case AW’s high-risk vehicles were speeding vehi-
cles. This suggests that the current highest speed limit (i.e., 80 km/h) in 
the transition area may not be sufficient to ensure road safety. Therefore, 
when developing traffic safety management strategies for Case AW, the 
primary focus should be on lowering the highest operating speed limit in 
the middle lane. 

Additionally, as shown in Fig. 11(b), the key risk-contributing fea-
tures for Case BW are the N3, A3, X2, N1 (number of vehicles in the 
innermost lane), and N2. Among them, the N3, X2, N1, and N2 all make 
a positive contribution to high crash risk. Combining these results with 
those of the feature analysis of A3 above, in scenario AW, high-risk 
scenarios exhibit the following characteristics when compared to low- 
risk scenarios: a) increased traffic flow in road segment; b) higher 
speeds observed in the middle lane; and c) more vehicles changing lanes 
to the outermost lane. Additionally, there are 30 high-risk vehicles that 
were speeding in Case BW. The positive contribution of S2 (number of 
speeding vehicles in the middle lane) to high crash risk also indicates a 
serious speeding problem in the middle lane of the transition area. This 
might be related to the drivers not carefully observing the speed limit 
signs and not having enough time to slow in the transition area. More-
over, according to the analysis results in Section 5.2.1, many vehicles 
changing lanes to the outermost lane is a major reason for the higher 
crash risk in Case BW. Therefore, traffic safety management strategies 
for Case BW could be developed from the following three perspectives: 
a) optimize the speed limit sign placement (e.g., adequate distance from 
the transition area and ensuring that signs are visible enough); b) 
improve speeding vehicle management; c) reduce traffic flows in the 
outermost lane (e.g., opening emergency lanes); and d) reduce the 

number of vehicles changing lanes to the outermost lane in the transition 
area (i.e., prompt vehicles to change lanes prior to entering the work 
zone). 

6. Conclusion 

In this study, a comprehensive approach is proposed to investigate 
crash risks and identify key risk-contributing features in transition areas 
of highway work zones. The primary contributions are summarized as 
follows. First, at the methodological level, we improve the safety po-
tential field model and propose an SSM, that is WCRF force, for 
measuring crash risks. With the improvements made from multiple 
perspectives, the WCRF force is more practical to implement and is 
better suited for measuring crash risks in work zones than conventional 
SSMs including existing field-based models. Second, at the application 
level, we collected a large number of vehicle trajectories data from 
surveillance videos, sourced from two road segments under two condi-
tions: with and without work zones. Based on this, we investigate key 
risk-contributing features and their heterogeneity in crash risk across 
different work zones on a highway. A case study is conducted to validate 
and examine the proposed approach, and we obtain the following pri-
mary conclusions from the case study.  

1) Compared to TTC and DRAC, the WCRF force developed in this study 
offers a more comprehensive and accurate measurement of crash 
risks in complex traffic environments. This is due to the advantages 
of the safety potential field in describing the crash risk of multifactor 
influence and multitarget interaction. The WCRF force not only 
identifies the vehicle’s extreme risk state, but also accounts for the 
influence of lateral safety distance, vehicle type, and road grade on 
crash occurrences.  

2) Setting up a work zone increases the crash risks on that road 
segment. The findings of the case study indicate that closing the 
innermost lane may not only increase the crash risk in the middle 
lane but also impact the crash risk in the outermost lane. Compara-
tive analysis of crash risks in each lane indicates that the higher 
frequency of lane changes among vehicles might be the primary 
cause for these increased crash risks. 

3) The influence of traffic features on crash risks exhibits great het-
erogeneity across different work zones. Not only are there variations 
in the key risk-contributing features of the transition area in different 
work zones, but the same feature might also make opposite contri-
butions to high crash risk. These findings emphasize the importance 
of considering the key risk-contributing features specific to each 
work zone and implementing targeted improvement measures when 
developing traffic management strategies. 

However, this study still has some limitations. First, from the 
perspective of application, this study solely focuses on the transition 
area and investigates only one type of work zone, that is, the closure of 
the innermost lane on the highway segment with three lanes in each 
direction. Second, from the perspective of methodology, method selec-
tion or optimization is not a focus of this study. We did not compare the 
performances of various classifiers, examine the effects of different time 

Fig. 12. Example of forced lane-changing maneuver. The write car is forced by the black car to change from the middle lane to the outermost lane.  
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windows on classification performance, or consider the pros and cons of 
various resampling algorithms. Hence, in future work, we will attempt 
to explore different types of work zones as well as the other areas apart 
from the transition area within the work zone, aiming to gain a more 
comprehensive understanding of the key risk-contributing factors in 
work-zone high-risk scenarios. Additionally, we will further optimize 
the proposed approach by incorporating the resampling algorithms and 
classifiers with more advanced performance (Ding et al., 2022; Yuan 
et al., 2019). Moreover, we will continue to improve the proposed 
approach for identifying risk-contributing features more effectively and 
efficiently, such as adopting more cutting-edge machine learning tech-
niques and optimizing time window selection. 
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