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Abstract: Mountain highway crashes usually have a weather tendency, and the crash-prone sections
show obvious weather differences. However, there were few targeted quantitative analyses of the
impact of weather conditions on crash-prone sections in previous studies. Aiming at the problem
that traditional identification methods ignore the difference in weather, this paper proposed the
time-spatial density ratio method. The method quantified the length of the road section, the period,
and the influence of different weather conditions through the time-spatial density ratio. Then the time-
spatial density ratios under different weather conditions were comprehensively sorted in parallel.
Finally, the risk threshold was determined according to the characteristics of the cumulative frequency
curve’s double inflection points, and the crash-prone sections under each weather condition were
identified. This paper evaluated the crash-prone sections of the G76 Expressway. Moreover, the crash
risk situation under each weather condition was characterized through kernel density analysis. The
method was compared with the cumulative frequency method, a traditional method suitable for
Chinese highways with similar application conditions. The effective search index was utilized as a
comparison factor. The results showed that the effective search index of the time-spatial density ratio
method was more than 80% greater than that of the cumulative frequency method.

Keywords: traffic safety; crash-prone sections; time-spatial density ratio method; mountain highway;
complex weather

1. Introduction and Review

Traffic safety is a globally acknowledged issue; traffic crashes are the world’s eighth
largest cause of death. Annual Report on Road Traffic Accident Statistics shows 265,204
road traffic crashes in China in 2019 [1]. The Decade of Action for Road Safety campaign
launched by the World Health Organization set a goal that by 2030, global road traffic fatal-
ities should be reduced by 50% [2]. Due to complex climatic factors, mountain highways
often have potential safety hazards in some sections. The number and characteristics of
traffic crashes in some locations are significantly more prominent than in other locations,
defined as crash-prone sections [3]. Determining the location of crash-prone sections on the
road is crucial to enhancing the traffic safety of the road.

There is extensive literature focusing on the identification of crash-prone sections.
Among the common identification methods of crash-prone sections, Florida’s traffic man-
agement department first applied the crash number method in identifying crash-prone
points. Since then, the crash number method, the crash frequency method, and the equiv-
alent crash frequency method have been extensively used [4–6]. These methods were
typically used as basic methods and combined with other methods to improve the effi-
ciency and accuracy of identification. Jordan [7] proposed the matrix method that com-
prehensively considered the number of crashes and the crash rate. Fang et al. [3] applied
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the statistical principle to propose the cumulative frequency curve method to identify
crash-prone sections. In addition, the research methods developed include the safety factor
method, the equivalent crash number method, etc. [8]. These methods carry out simple
statistical analysis based on historical data, and determine the threshold value subjectively
or objectively as the identification criterion for crash-prone sections. The traditional iden-
tification methods of crash-prone sections have been developed and matured, which are
simple, intuitive, and easy to calculate. Nevertheless the analysis of crash characteristics is
insufficient because only a few factors were considered.

With the development of related research, clustering analysis methods such as the K-
means algorithm, density-based clustering algorithm, grey correlation analysis, and fuzzy
clustering have been widely used. Shen [9] established the principal component clustering
analysis model according to the cumulative equation contribution rate and component
index value. Wan Y et al. [10] proposed a method that can quickly identify and classify
crash black spots on urban roads, to solve the problems caused by the randomness of crash
occurrences and the unclear classification of crash black spots by the traditional model.
Yakar [11] proposed the crash-prone road section identification method based on multicrite-
ria decision-making, and the identification rate can reach more than 67%. Zhang et al. [12]
proposed an improved K-means clustering algorithm to solve the shortcomings of the
traditional algorithm. The clustering analysis methods can make up for the omission of
identification caused by the simple division of road sections, and more objectively reflect
the actual length of crash-prone sections. However, the determination of cluster numbers
is more subjective, directly affecting the threshold’s determination. These methods have
certain applicability and limitations.

In order to study the characteristics of traffic crashes, many statistical methods
were used in crash analysis, such as Poisson distribution, negative binomial distribu-
tion, Bayesian model, etc. To study the relationship between the road and crash-prone
sections, Wang J et al. [13] quantitatively examined the effect of 3D road alignment on
traffic safety on mountainous freeways by the Bayesian Tobit model. Since the traffic
volume and the crash rate are not directly proportional, Saccomanno et al. [14] indicated
that the Bayesian model could be more accurately applied to road sections with complex
traffic compositions. Malyshkina and Mannering [15] proposed a Markov transformation
counting data model to predict the number of crashes on the road. Barua et al. [16] applied
a stochastic effect model considering heterogeneity to study spatial autocorrelation in traffic
crashes. Debrabant et al. [17] used statistical methods such as Poisson-Tweedie distribution
to identify the black spots of crashes. Methods based on mathematical models have the
characteristics of higher identification accuracy. However, most methods are based on
specific model assumptions and predefined potential relationships between dependent and
independent variables. If these assumptions are violated, some models may mistakenly
identify crash-prone sections [18].

Based on the shortcomings of traditional methods, new methods combined with ma-
chine learning algorithms and spatial analysis techniques have been vigorously developed
in recent years. Zhang et al. [19] investigated stratification heterogeneity in Shenzhen
traffic crashes, what factors influence the casualties, and the interaction of those factors.
Fan et al. [20] proposed a black-spot recognition algorithm based on the support vector
machine and a black-spot analysis method based on the deep neural network. Gutierrez-
Osorio and Pedraza [21] reviewed algorithms and models including data mining and
machine learning techniques for analyzing, characterizing, and predicting road crashes.
These methods find a new way to identify crash-prone sections and improve the shortcom-
ings of traditional methods. Nevertheless, each method has its applicability and the related
research on new methods has yet to establish a system.

Given the above, most studies on the identification of crash-prone sections are based
on the spatial discreteness of traffic crashes. The depth of the potential causes of crashes is
insufficient, especially the relationship between complex weather conditions and crashes.
The weather predominantly affects many traffic crashes, especially in places with complex
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weather. The impact of weather on crashes is significant. Many methods average out
the impact of weather on crashes. In this area of research, Ahmed et al. [22] used the
Bayesian hierarchy method to study the impact of special weather on mountain highways.
Yu et al. [23] used the Bayesian inference method to obtain weather condition variables, es-
pecially precipitation, which played a crucial role in the crash model. Yakar [24] considered
the spatial attributes of crashes and established the relationship between the number of
crashes and road environmental characteristics. The abovementioned studies considered
the crash distribution from the road environment, weather conditions, meteorological
indicators, and other factors, but did not quantify their impact on the crash distribution.

Based on the overall literature review, few studies have investigated the quantitative
methodologies of the impact of different weather conditions on crash-prone sections. This
research aimed to study the identification of crash-prone sections under complex weather
conditions by establishing the relationship between the number of crashes and the time-
spatial characteristics of crashes.

2. Data Preparation

The object of this study is the G76 Expressway in the southwest mountainous area
of China, with a total length of 135.875 km, as shown in Figure 1. The subgrade of the
expressway is 24.5 m wide, and it is a two-way four-lane road with a design speed of
80 km/h. The high-pier bridges and long tunnels are densely constructed, with many long
longitudinal slope sections. It has distinctive features of complex topography, geology, and
relatively harsh weather conditions.

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 17 
 

Given the above, most studies on the identification of crash-prone sections are based 

on the spatial discreteness of traffic crashes. The depth of the potential causes of crashes 

is insufficient, especially the relationship between complex weather conditions and 

crashes. The weather predominantly affects many traffic crashes, especially in places with 

complex weather. The impact of weather on crashes is significant. Many methods average 

out the impact of weather on crashes. In this area of research, Ahmed et al. [22] used the 

Bayesian hierarchy method to study the impact of special weather on mountain highways. 

Yu et al. [23] used the Bayesian inference method to obtain weather condition variables, 

especially precipitation, which played a crucial role in the crash model. Yakar [24] consid-

ered the spatial attributes of crashes and established the relationship between the number 

of crashes and road environmental characteristics. The abovementioned studies consid-

ered the crash distribution from the road environment, weather conditions, meteorologi-

cal indicators, and other factors, but did not quantify their impact on the crash distribu-

tion. 

Based on the overall literature review, few studies have investigated the quantitative 

methodologies of the impact of different weather conditions on crash-prone sections. This 

research aimed to study the identification of crash-prone sections under complex weather 

conditions by establishing the relationship between the number of crashes and the time–

spatial characteristics of crashes. 

2. Data Preparation 

The object of this study is the G76 Expressway in the southwest mountainous area of 

China, with a total length of 135.875 km, as shown in Figure 1. The subgrade of the ex-

pressway is 24.5 m wide, and it is a two-way four-lane road with a design speed of 80 

km/h. The high-pier bridges and long tunnels are densely constructed, with many long 

longitudinal slope sections. It has distinctive features of complex topography, geology, 

and relatively harsh weather conditions. 

 

Figure 1. Study area. 

Determining the analysis period is very important. From a purely statistical point of 

view, a high number of crashes benefits identification accuracy. On the other hand, within 

the analysis period, many changes in the field (traffic flow, road conditions, traffic poli-

cies, vehicle proportions, etc.) will affect the analysis results, limiting the selection of the 

period. As a result, the period for identifying crash-prone sections ranges from 1 to 5 years 

(Yakar [24]). In this case, the traffic control situation is complex. The crash data from Jan-

uary 2018 to April 2021 were used for analysis to ensure that the driving environment 

would not change much during the period. During the study period, there were 1286 traf-

fic crash data records, and the crash situation under each weather condition is shown in 

Figure 2. In addition to the picture, there were two foggy crashes in January and three in 

February. 

Figure 1. Study area.

Determining the analysis period is very important. From a purely statistical point
of view, a high number of crashes benefits identification accuracy. On the other hand,
within the analysis period, many changes in the field (traffic flow, road conditions, traffic
policies, vehicle proportions, etc.) will affect the analysis results, limiting the selection
of the period. As a result, the period for identifying crash-prone sections ranges from
1 to 5 years (Yakar [24]). In this case, the traffic control situation is complex. The crash
data from January 2018 to April 2021 were used for analysis to ensure that the driving
environment would not change much during the period. During the study period, there
were 1286 traffic crash data records, and the crash situation under each weather condition
is shown in Figure 2. In addition to the picture, there were two foggy crashes in January
and three in February.
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Figure 2. Statistics of crash data under (a) sunny, (b) rainy, (c) cloudy, and (d) overcast weather.

A crucial step in data preparation is road segmentation. The determination of the
unit length is critical in the identification of crash-prone sections. The fixed-length method
makes it difficult to indicate what the optimal length of the segment should be. If the
selected length is too long, it is difficult to ensure the authenticity and accuracy of the unit
crash situation. On the other hand, if the length is too short, it may result in insufficient
data precision (Yakar [24]). These issues should be taken into account when dividing roads.
Maen et al. [25] compared the effect of methodological diversity of road network segmenta-
tion on the performance of different crash-prone sections identification methods. A study
documented the performance evaluation results of three different highway segmentation
methods (Kwon et al. [26]). In this study, the homogeneity method was used to take the
change point of the highway’s horizontal and vertical linear elements as the dividing point.
The road was divided into linear fixed road units, and each unit was numbered as shown
in Figure 3. The research road was divided into 677 units, and the number of crashes was
matched for each unit. A database was established according to the division unit combined
with the historical weather data of the crash, as shown in Figure 4.



Sustainability 2022, 14, 15181 5 of 16Sustainability 2022, 14, x FOR PEER REVIEW 5 of 17 
 

 

Figure 3. Section division by homogeneous method. 

 

Figure 4. Database creation. 

3. Methodology 

3.1. Framework for Research Design 

The methodology of applying crash data analysis is shown in in Figure 5. 

Step 1. Determination of study area and time span. 

Step 2. Linear unit division and database establishment. 

Step 3. Calculation of the density ratio. 

Figure 3. Section division by homogeneous method.

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 17 
 

 

Figure 3. Section division by homogeneous method. 

 

Figure 4. Database creation. 

3. Methodology 

3.1. Framework for Research Design 

The methodology of applying crash data analysis is shown in in Figure 5. 

Step 1. Determination of study area and time span. 

Step 2. Linear unit division and database establishment. 

Step 3. Calculation of the density ratio. 

Figure 4. Database creation.

3. Methodology
3.1. Framework for Research Design

The methodology of applying crash data analysis is shown in in Figure 5.
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Step 1. Determination of study area and time span.
Step 2. Linear unit division and database establishment.
Step 3. Calculation of the density ratio.
Step 4. Application of cumulative frequency method to determine the risk threshold

and grading by the characteristic of the cumulative frequency curve.
Step 5. Validity testing of identified crash-prone sections.
Step 6. Visual understanding of highway crash risk areas using AcrGIS’s kernel

density analysis.

3.2. Spatial and Time Density Ratio Indicators

Spatial density expresses the crash rate measured by length. The purpose is to balance
the effect of the length of the road segment unit on the crash distribution. The number of
days for different weathers in the study period varied widely. Time density expresses the
crash rate measured by time. The purpose is to eliminate the error of the number of days in
different weather to study the risk of different weather.

The basic theme of spatial and time density ratio indicators is to characterize the rela-
tive safety level of road sections. Yakar [24] proposed similar relative analytical indicators
but lacked meteorological considerations. These indicators can be used in various ways
according to the data source situation and analysis requirements representing the crash
risk of different dimensions. The weather-specific crash risk identification indicators were
proposed by distinguishing crash distribution under different weather conditions.

3.2.1. Spatial Density Ratio

From a spatial perspective, the influence of the length of units on the crash frequency
is considered, which is quantified by calculating the crash spatial density. According to the
ratio of the unit crash spatial density to the road crash spatial density, the spatial density
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ratio is obtained as shown in Equation (1), representing the relative value of the crash
spatial distribution.

Ps =
Ne/Le

N/L
(1)

where Ps is the spatial density ratio, Le is the unit length, as shown in the fifth column of
data in Figure 3. Ne is the number of crashes in the unit, as shown in the eighth column of
data in Figure 3. N is the number of crashes on the road, N = ∑ Ne. L is the length of the
road, L = ∑ Le.

3.2.2. Time–Density Ratio

The influence of complex weather conditions and period on crash frequency is con-
sidered from a time perspective. For each weather condition, crash time densities were
calculated to quantify the effect of the period. The unit time density ratio and the road
time density ratio are obtained as shown in Equations (2) and (3). The two indicators
respectively represent the relative value of the accident time distribution of each unit and
the road under each weather condition.

Pte =
Nxe /Dx

Ne/D
(2)

Pt =
Nx/Dx

N/D
(3)

where Pte is the unit time density ratio, Pt is the road time density ratio, Nxe is the number
of crashes in the unit in x weather, Nx is the number of crashes on the road in x weather,
Nx = ∑ Nxe . Dx is the number of days in x weather, D is the total number of days,
D = ∑ Dx.

3.2.3. Time-Spatial Density Ratio

The influence of unit length and time span under complex weather is comprehensively
considered from a time-spatial perspective. Its combined effect is quantified by calculating
the time-spatial density ratio as shown in Equation (4). The time-spatial density ratio
attribute under each weather condition is assigned to each unit to represent the relative
time-spatial value of crash risk.

Pts =
Nxe /Le/Dx

N/L/D
(4)

where Pts is the time-spatial density ratio.

3.3. Risk Threshold and Classification

There are relatively few safe sections and crash-prone sections on actual roads, but
more low-risk sections. In this study, the cumulative frequency diagram was drawn through
the density ratio of each unit. The cumulative frequency curve has the characteristic of
double inflection points, as shown in Figure 6. The density ratios corresponding to the
double inflection points were used as the crash risk threshold. The risk levels were divided
into three categories: level I represented the relatively safe section, level II represented the
low-crash section, and level III represented the crash-prone section.

For determining the inflection point, Wei and Wen [27] adopted a relatively objective
method of selecting the inflection point of the cumulative frequency curve. All points
in the curve were used for linear regression analysis. The curve regression was set to
satisfy two conditions: the determinant coefficient (R2) greater than 0.9 and the significance
level (p) less than 0.05. When the conditions were not met, the uppermost point of the
curve was gradually discarded. The point that satisfied the conditions is the inflection
point. Fan et al. [28] proposed a double inflection points identification method based on
this method. Starting from the bottom end of the curve, the determinant coefficient of
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the fitted curve between each point and the bottom end was calculated sequentially. In
the beginning, the determinant coefficient would have a series of fluctuations, and then it
would gradually increase to the highest point, the inflection point.
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The two abovementioned methods have different applicable curves for selecting in-
flection points. This study was based on these two methods. According to the characteristic
of the cumulative frequency curve of the density ratio, the first inflection point was the
position of the maximum determinant coefficient of the fitted straight line. Starting from
this inflection point, the determinant coefficient of the fitted straight line between the points
after the first point and the first inflexion point was calculated in turn. The point until the
determinant coefficient of critical 0.9 was taken as the second inflection point, as shown in
Figure 6.

3.4. Kernel Density Analysis

Kernel density analysis is a nonparametric spatial analysis method that calculates the
density of a feature in its surrounding neighborhood [29]. According to the number of
crashes, Xie et al. [30] integrated NetKDE with native Moran’s I for hotspot detection of
traffic crashes and evaluated statistical significance using two Monte Carlo simulations.
Anderson [31] presented a methodology using Geographical Information Systems and
Kernel Density Estimation to study the spatial patterns of injury-related road crashes.
Mohaymany et al. [32] used the results of network kernel density estimation for fatal, injury,
and property damage-only crashes to estimate the spatial risk pattern of crashes. Due to
the complexity of crash causes, crash risk areas are often not only located in crash-prone
sections. The crash risk areas of the road can be reflected according to the density ratio
through the kernel density analysis method.

In this study, each unit was assigned a density ratio attribute value in Arcmap. The
Gaussian kernel function was employed for kernel density analysis based on the traffic
safety risk characteristics (Silverman [33]). The result of the kernel density analysis was
used to characterize the crash risk situation. The crash risk distribution of the road was
displayed in 3D through ArcScene.

3.5. Method Comparison and Test

The time-spatial density ratio method is based on the density ratio indicator to analyze
crashes under complex weather conditions. The density ratio of each unit was sorted, and
the crash-prone sections were determined based on the threshold. An essential traditional
method similar to this method is the cumulative frequency method.
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The cumulative frequency method is based on the number of unit crashes, and the
crash threshold is determined according to the cumulative frequency curve to judge the
crash-prone sections. This method avoids the problem that the unified standard value
cannot meet the actual needs of different projects, and is suitable for the actual situation
where the driving safety level of each road in China is quite different (Wu et al. [34]).

In this study, the effective search index was proposed to test the validity of the
identification results of crash-prone sections. The identification effect was evaluated by the
relative proportion of the number of crashes and the length of the road section, as shown in
Equation (5). The practicability of the time-spatial density ratio method was verified by
comparing the cumulative frequency method.

SEI =
Ni/N
Li/L

(5)

where SEI is the search efficiency index, Ni is the number of crashes on identified sections,
and Li is the length of identified sections.

4. Results
4.1. Spatial Distribution of Crashes

The attribute of the spatial density ratio of each unit was given. The corresponding
values of the double inflection points of the cumulative frequency curve calculated by the
threshold determination method were 0.5 and 2.8. As indicated in Figure 7, the road risk
levels were separated into three categories. According to the cumulative frequency method,
the unit with more than five incidents was the crash-prone section. The effective search
index was calculated respectively, and the identification effect is shown in Table 1.
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Table 1. Identification effect of the spatial density ratio method.

Risk Level Ps Length of the
Road (m)

Ratio of Identified
Length to the
Total Length

Number of
Crashes

Ratio of Identified
Crashes to Total Crashes

Search Efficiency Index

Spatial Density
Ratio Method

Cumulative
Frequency Method

I 0~0.5 58,958.15 0.434 66 0.051 0.12
2.97II 0.5~2.8 68,263.48 0.502 758 0.589 1.17

III 2.8~∞ 8652.962 0.064 462 0.360 5.64

Level I sections account for 43.4% of the length, and only 5.1% of crashes occurred.
Level III sections account for 6.4% of the length but have 36.0% of crashes. Most crashes
occur on a small number of dangerous road sections. The effective search index of the
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cumulative frequency identification method based on the spatial density ratio is much
larger than that based on the number of crashes. The identification of crash-prone sections
is more accurate after balancing the length of the road section.

4.2. Time Distribution of Crashes
4.2.1. Time Distribution of Unit Crashes

The time–density ratio attribute of each unit under each weather condition condition
was given, which was utilized to distinguish the influence of different weather conditions
on the crash risk. The time density ratio distribution of each unit is shown in Figure 8 (the
locations marked in the figure are crash-prone sections identified from a spatial perspective).
The length of each bar with different colors represented the relative value of crash risk
under each weather condition of the unit.
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Units that were significantly affected by weather conditions could be sorted out. This
can be used as the basis for the targeted security improvement of the unit, as shown in
Table 2.

Table 2. Units heavily affected by complex weather conditions.

No. Number of
Crashes

Pte

of Sunny Days
Pte

of Cloudy Days
Pte

of Overcast Days
Pte

of Rainy Days
Pte

of Foggy Days

111 11 0.82 0.91 0.33 2.31 0
308 5 0.9 0.67 0 3.05 0
309 4 0 0.83 2.73 0 0
359 5 2.69 0 0.73 1.02 0
365 4 0 0.83 0 2.54 0
380 8 0 0.83 0.46 3.18 0
384 4 0 0 0.91 3.82 0
385 16 0.84 1.04 0.68 1.27 12.67

. . . . . .
662 4 0 0.83 0 3.82 0

4.2.2. Time Distribution of Road Crashes

The time–density ratio of the road in various weather was given, which was used to
characterize the impact of weather conditions on the risk of road crashes. The time–density
ratio distribution of the road is shown in Figure 9. It can be seen from the figure that the
crash risk of the road in rainy weather was significantly higher than that in other weather.
Only six days were foggy within the research period due to the less foggy weather in the
study area. Traffic crashes in foggy weather were more occasional, and the management
department would take control measures such as closing highways. Therefore, there was no
absolute reference value for foggy days. It can reflect the relative safety level of highways
under various weather conditions based on sufficient data.
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4.3. Time-Spatial Distribution of Crashes

The time-spatial density ratio of each unit in each weather condition was assigned and
sorted in parallel. The corresponding values of double inflection points of the cumulative
frequency curve were 1.9 and 5.8, as shown in Figure 10, which were used as the risk
threshold to divide the risk level into three categories.
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The crash-prone sections and the crash risk represented by the kernel density under
each weather condition are shown in Figure 11.
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Figure 11. Distribution of time-spatial density ratio in different weather conditions. (a) sunny,
(b) cloudy, (c) overcast, and (d) rainy.

ArcScene was used to visualize the time-spatial density ratio kernel density values in
3D. The complex-phase road crash risk distribution under complex weather conditions was
obtained, as shown in Figure 12. From the figure, the crash risk of each unit under each
weather condition can be clearly and visually identified, the influence of complex weather
conditions on traffic crashes was highlighted, and the weather prone to crashes in each
road section can be identified.
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The effective search index verifies the identification effect, as shown in Table 3.
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Table 3. Identification effect of the time-spatial density ratio method.

Weather Risk Level Pts Ratio to the Total Length Ratio to Total Crashes
Search Efficiency Index

Time-Spatial Density
Ratio Method

Cumulative
Frequency Method

Sunny
I 0–1.9 0.818 0.139 0.17

5.466II 1.9–5.8 0.158 0.592 3.749
III 5.8–∞ 0.025 0.269 10.994

Cloudy
I 0–1.9 0.818 0.215 0.263

4.915II 1.9–5.8 0.18 0.553 3.071
III 5.8–∞ 0.024 0.231 9.755

Overcast
I 0–1.9 0.789 0.18 0.229

4.553II 1.9–5.8 0.185 0.513 2.777
III 5.8–∞ 0.026 0.307 11.588

Rainy
I 0–1.9 0.749 0.081 0.109

4.826II 1.9–5.8 0.213 0.576 2.706
III 5.8–∞ 0.039 0.342 8.892

According to the calculation results in Table 3, the proportions of road lengths for the
three risk levels in each weather condition are shown in Figure 13.
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Figure 13. The length ratio of each weather condition and each grade.

There is a clear trend in Figure 13. In level I, the proportion of sunny and cloudy
days was relatively large, and the proportion of overcast and rainy days was relatively
reduced. In level II, the proportion of sunny days was relatively small, while the proportion
of other weather gradually increased. In level III, the proportion of rainy days increased
significantly. It can be seen that the weather has a significant impact on the classification of
crash risk levels.

5. Comparative Analysis and Discussion

In the case of roads that cannot be identified uniformly due to differences in the road
network, the time-spatial density ratio method and the cumulative frequency method
are based on the relative risk level of road units. Crash-prone sections are determined
according to the threshold by sorting them. This allows for macro-control of the road’s
crash tendency. The time-spatial density ratio method has the following advantages
compared with the cumulative frequency method. By considering the crash distribution
under complex weather conditions and comprehensive parallel ranking, the crash-prone
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sections under different weather conditions were identified. By utilizing the threshold
determination method suitable for the characteristics of the curve in this study, the accuracy
of threshold and classification was improved. By quantifying the impact of road length
and period on crash distribution, the accuracy of road risk identification was improved.

However, the following explanation is required on the calculation method. On the
one hand, the road cross section and the number of lanes in the research section have not
changed. The highway road environment is similar. So the road section units were not
distinguished from the perspective of road attributes. On the other hand, the period of the
research data was extensive. It was not easy to quantify the traffic volume in units of days.
More importantly, the primary purpose of this study was to determine the crash-prone
sections of the entire road more accurately. Therefore, factors other than crash distribution
were not considered.

In this case, when identifying crash-prone sections from a spatial perspective, the
identification results covered 36.0% of the crashes in 6.4% of the road. The effective search
index was increased by 89.9% compared with the cumulative frequency method. From a
time-spatial perspective, on sunny days, 2.5% of the road covered 26.9% of sunny crashes,
and the effective search index increased by 101.1%; on cloudy days, 2.4% of the road
covered 23.1% of cloudy crashes, and the effective search index increased by 98.5%; on
overcast days, 2.6% of the road covered 30.7% of overcast crashes, and the effective search
index increased by 154.5%; on rainy days, 3.9% of the road covered 34.2% of rainy crashes,
and the effective search index increased by 84.3%. According to the comparison of the
effective search index, the identification effect of the time-spatial density ratio method was
better in each situation. According to the calculation results, the crash-prone sections on
rainy days were much greater than in other weathers. It can be seen that the time-spatial
density ratio method has weather pertinence and high accuracy. Based on statistical theory,
this method does not require established model assumptions and has the characteristics of
simple calculation.

Another advantage of the time-spatial density ratio method is that it can be applied
in many ways, providing a reference for road management. Through spatial analysis, the
crash-prone sections in spatial can be quickly determined, indicating which sections need
to be fixed and fitted out with safety features. The impact of different weather conditions
on the unit or the road can be identified through time analysis, and the weather-specific
safety decision-making and safety facility layout plan can be put forward. Through time-
spatial analysis, the crash risk situation of highways under various weather conditions
can be comprehensively presented, which offers a foundation for the traffic management
department to control the traffic in real-time according to weather and road sections.
Furthermore, hazard ranking helps tackle the priority problem that typically emerges in
highway operation management due to a lack of people and financial resources.

Based on the results of this study, the locations of crash-prone sections under different
weather conditions are different. The impact of weather on traffic safety should be actively
considered. Meteorological monitoring, data sharing, and dynamic early warning should
be the primary means of safety management and control. The management department
should prepare emergency prompts, crash prevention, and measures in crash-prone sections
according to weather conditions.

6. Conclusions

Identifying crash-prone sections is critical to the planning of traffic policies and the
implementation of safety measures. Crash-prone sections are identified using a variety
of methods. Considering the differences of highways and the practical applicability, the
cumulative frequency method identifies crash-prone sections based on the number of
crashes and the relative risk of road sections. However, previous studies have pointed out
that the weather environment significantly impacts driving safety. In order to consider the
weather factor and improve the identification accuracy, this paper proposed the time-spatial
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density ratio method, which conducted a targeted study on the safety of mountain highway
sections under complex weather conditions.

Crashes were linked to weather conditions, road length, and period using the time-
spatial density ratio method. The crash distribution was calibrated by distinguishing
between different weather conditions. In this paper, combined with the actual data analysis
of the G76 Expressway in the southwestern mountainous area of China, the identifica-
tion accuracy was more than 80% higher than that of the cumulative frequency method.
The crash-prone sections under different weather conditions were found, revealing the
weather variances.

The distribution of road crashes in mountainous areas is influenced by a number
of factors. Considering the difficulty in obtaining detailed crash information and the
inaccuracy of crash data on many highways, this study only used the number of crashes
as the basis for risk analysis. To continuously enhance identification accuracy, elements
impacting crash distribution such as crash severity, road property damage, and traffic flow
can be considered based on richer data.

In summary, this study analyzed the impact of complex weather on the crash risk
of highways in mountainous areas. Given the current data situation in traffic research,
the time-spatial density ratio method is an effective tool to obtain crash-prone sections
under complex weather conditions accurately. Through the introduction and application of
this paper, we hope to encourage researchers to explore the use of this highly applicable
statistical method.

At present, the historical data of many roads are not detailed enough due to the
different methods of determining traffic statistics. New statistical methods are needed
to enable researchers to extract more precise results from historical data. These easy-to-
apply methods certainly have general applicability and meteorological pertinence to the
data of different roads. This type of statistical analysis holds considerable promise in the
absence of data detail. As research into statistical analysis of highway crash data progresses,
researchers need to strengthen the underlying methodology. The pertinence, accuracy, and
applicability of the methodology will be continuously improved in the future.
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