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A B S T R A C T

Vehicle trajectory data can reveal actual driving behavior patterns reflected by different road geometric designs, 
providing important insights for road safety analysis and improvements. This study aims to is to explore the 
correlation between vehicle trajectory fractal dimension (FD) and highway crash rate (CR) using large-scale 
telematics trajectory data. Specifically, we propose three methods to measure the FD of vehicle trajectories, 
and developed fractal parameter estimation technology. The results show that FD differences between road 
segments have a statistically significant effect on CR. A comparison of FD with five common surrogates in 
identifying high-risk crash sections reveals that FD reduces the false alarm rate from 52% to 94% (other sur-
rogates) to 46%, with a recall rate of 95%. The fractal method enhances the dimensionality of trajectory feature 
analysis, refining the granularity of road safety analysis. It fully considers the interaction between road geometry 
design and driving behavior, revealing the complex dynamic movement of vehicles within the road system. This 
study provides methodological support for improving road geometry design and enhancing road safety.

1. Introduction

The highway network density has rapidly increased to meet the 
growing demands of traffic and mobility. However, the increase in 
design complexity and diversity has also led to a rise in accidents and 
fatalities (Dai et al., 2022). As a result, road management department 
and policymakers have been striving to monitor unsafe areas on the 
highway. The first step in implementing road safety management plans 
is screening, which primarily involves reducing the list of hotspots to a 
manageable one (Wang et al., 2024a). While the analysis method based 
on crash data can identify more reliable high-risk spatial locations, it 
requires long-term accumulation and is costly due to the small sample 
size and unobservable heterogeneity (Khan et al., 2023). Therefore, road 
safety monitoring and management are shifting towards using larger 
scale trajectory data as safety surrogates (or crash surrogates) (Gedamu 
et al., 2024).

Safety surrogates describes the parameters of network and vehicle 
attributes on the road, which are easier to record or collect (Nikolaou 
et al., 2023). Among them, micro level surrogates focus on the impact of 

the gap and speed difference between the target vehicle and surrounding 
vehicles on crash risk (Wang et al., 2021). However, collecting trajectory 
data for the entire traffic flow is difficult and costly. More importantly, 
in most cases, trajectories are limited in spatiotemporal coverage 
(Arman and Tampere, 2022). The only exception is the recent high-cost 
automatic trajectory data collection project, I-24 MOTION, which covers 
several kilometers and spans several days (Wang et al., 2024b). 
Furthermore, researchers cannot plan passive trajectory collection based 
solely on the observation of traffic phenomena. Many vehicles are now 
equipped with mobile sensors, which, through their real-time and 
extensive coverage, enable data-assisted traffic management and safety 
assessments. The data is then uploaded to storage servers via continuous 
cellular or delayed Wi-Fi connections (Alrassy et al., 2023). Compared to 
other data collection devices, mobile sensors are low-cost and can cover 
any required time and spatial range (Arman and Tampere, 2024).On the 
other hand, the accuracy of mobile sensors’ positioning and the conve-
nience of data collection have significantly improved in recent years 
(Zhang et al., 2021), providing data support for analyzing the patterns of 
single vehicle’s kinematics at different spatial and temporal moments 
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with finer granularity and on a larger scale (Arman and Tampere, 2024).
Kinematic triggers surrogates extracted from large-scale telematics 

data have been shown to be highly correlated with crashes risks (Kim 
et al., 2024). When kinematics triggers exceed predefined thresholds, 
they are considered as near-crash or safety–critical events (Pinnow et al., 
2021). However, these kinematic triggers also lead to some false positive 
rates. On one hand, the factors contributing to crashes may come from 
different risk sources and result from the interaction of multiple factors, 
such as road geometric design, which can potentially influence driving 
behavior (Khan et al., 2023). On the other hand, these kinematic triggers 
focus only on a single dimension of kinematics or a single pattern 
leading to high crash rates (CR) (Ye et al., 2024), hindering a compre-
hensive assessment of actual vehicle motion.

Fortunately, advancements in nonlinear analysis have made it 
possible to rapidly, accurately, and comprehensively extract informa-
tion from recorded signals (Lee and Park, 2021). This type of nonlinear 
analysis can utilize fractal theory (Zhao et al., 2022) to extract finer- 
grained information from trajectories. Fractal theory is a mathemat-
ical tool used to study complex and nonlinear phenomena, focusing on 
analyzing the self-similar characteristics of irregular shapes and patterns 
across different scales (Li et al., 2024a).If we compare vehicle trajec-
tories through road space with natural phenomena such as tree 
branches, leaf veins, human lungs, and exoskeletons (Moriguchi, 2023), 
we find that shape features may be an appropriate form to reflect the 
driving characteristics of trajectories. The unevenness and complexity of 
shape evolution reflect the deviations of actual driving paths of 
numerous vehicles (Hamedi and Shad, 2022), which in turn mirror the 
differences in road geometric elements. Compared to vehicle kinematic 
triggers, fractal analysis integrates partial road geometry and vehicle 
motion, taking into account interactions and capturing changes in both 
local and global patterns of vehicle paths (H. Li et al., 2023).

In order to use fractal characteristics as safety surrogates, they 
should be relevant to the outcomes: in our context, crash frequency and 
CR (Pinnow et al., 2021). The main focus of this work is to understand 
whether there is spatial correlation between the proposed safety surro-
gates and crashes, rather than inferring a causal relationship between 
the two. Therefore, this study examined and compared the degree of 
spatial correlation between fractal dimension (FD), macroscopic safety 
surrogates such as sight distance conformity degree, anti-skid require-
ment conformity degree, harsh braking, jerk, and yaw rate), and crash 
data (i.e., absolute crash count and CR normalized by traffic volume), as 
well as the ability to identify high-risk road sections. The vehicle tra-
jectories were derived from real-world telematics data collected be-
tween June and September 2023 from in-vehicle sensing devices 
mounted on 724 floating trucks in the Guilin City area, with a sampling 
frequency of 1HZ. The vehicles were equipped with onboard cameras 
and managed by Guilin Highway Company, from which vehicles 
affected by surrounding vehicles were filtered, making them represen-
tative for evaluating the spatial characteristics of the road. This article 
used the GPS vehicle trajectory error correction method developed by 
Arman et al. (Arman and Tampere, 2021) ensures that the GPS trajectory 
offset errors are controlled below the standard lane width. Additionally, 
geographic information matching technology (Ding et al., 2022) aligns 
vehicle trajectories with rich spatiotemporal data. To the best of the 
author’s knowledge, there is currently little research on using large-scale 
high-frequency sampled vehicle trajectory data to analyze highway 
safety. This article aims to enrich the application scenarios of such tra-
jectory data in highway safety analysis. In this work, the concept of 
vehicle trajectory fractal is introduced for the first time, and corre-
sponding computational methods and parameter estimation techniques 
are developed. Through in-depth analysis of the geometric features of 
vehicle trajectories at different resolutions, we found that vehicle tra-
jectories exhibit significant fractal characteristics. The results of incor-
porating fractal features into the negative binomial regression model are 
statistically significant, with locations having higher FD showing higher 
crash frequency. This finding provides an innovative, practical, and 

theoretical tool for road safety assessment and prediction. In this paper, 
FD is specifically used as a surrogate for estimating large-scale spatio-
temporal risks on highways, and its performance is evaluated by 
comparing Higuchi fractal dimension (HFD) with five commonly used 
surrogates. HFD reduces the false positive rate from 94 % (other surro-
gates) to 46 %, with a recall rate of 95 %, and FD demonstrates strong 
risk classification ability and better robustness under different road 
geometric designs. This finding offers a new perspective and methodo-
logical support for road safety analysis.

The remainder of this paper is organized as follows. In Section 2, we 
conduct a literature review. In Section 3, we introduce the concept of 
vehicle trajectory fractals and the calculation methods for FD. Then, in 
Section 4, we analyze the fractal characteristics of vehicle trajectories 
using trajectory data. In Section 5, we point out and discuss the theo-
retical and practical significance of FD, along with our new findings. 
Finally, we conclude the study in Section 6 and present its potential 
benefits for road traffic safety.

2. Literature review

2.1. The driving behavior safety surrogates from large-scale telematics 
data

The concept of surrogate safety measures (SSM) is mainly based on 
vehicle conflict datasets, such as TTC and PET (Sarkar et al., 2024). 
However, calculating these indicators is not an easy task as it requires 
complex sensing and tracking for object recognition and tracking to 
extract all relevant trajectories of potential interaction scenarios (Wang 
et al., 2021). Therefore, collecting TTC data in an uncontrolled, 
highway-scale environment requires advanced hardware and software. 
Given these challenges, Alrassy (Alrassy et al., 2023) expanded the scope 
of SSM by using single vehicle behaviors, such as kinematic triggers, as 
safety surrogates, allowing for the screening of safety–critical events. 
The data range and data localization accuracy required for these sur-
rogates have been significantly improved in the context of advances in 
mobile sensors (Zhang et al., 2021). Compared to vehicle trajectory data 
collected by other devices, mobile sensors offer lower costs, richer in-
formation, and a broader understanding of crash causes. The vehicle 
kinematic triggers derived from these data include the frequency of 
dangerous driving events, longitudinal and lateral accelerations, decel-
eration rates, jerk, and yaw rates, which have been incorporated into the 
study of “crash surrogate events,” having a significant impact (Kamla 
et al., 2019). For instance, Ziakopoulos et al. (Ziakopoulos, 2024) con-
ducted an empirical study based on GPS-supported mobile devices, 
showing that locations with more instances of harsh braking and 
aggressive acceleration tend to have more crashes. Furthermore, the 
usage methods of these kinematic trigger surrogates have been further 
expanded. Specifically, Kim (Kim et al., 2024) demonstrated a stronger 
correlation between the further development of these kinematic surro-
gates collected from onboard recorders and crashes by applying new 
concepts such as variable thresholds, unstable driving, and safe/reliable 
driving. These kinematic surrogates reduce reliance on crash data.

Most of the relevant studies in the literature consistently suggest that 
the variation in vehicle kinematics is positively correlated with highway 
crashes. However, this conclusion varies significantly across geometric 
designs (Nikolaou et al., 2023). For example, longitudinal acceleration/ 
deceleration and longitudinal jerk are more suitable for identifying 
crashes on simple straight road segments, where these events are 
described as related to driving fluctuations associated with crashes 
(Ziakopoulos, 2024). Li (Li et al., 2021) based on GPS jerk data (the time 
derivative of acceleration), developed a predictive model to identify 
hazardous highway locations. However, they note that large-scale 
studies are needed to test the reliability of jerk-based models. There-
fore, large-scale data is more crucial for the argument of safety surro-
gates. In curve sections, some studies have incorporated operational 
speed into geometric design, considering the interaction between 
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vehicle kinematic triggers and road geometry. Gavran et al. (Gargoum 
and El-Basyouny, 2020) investigated the difference between available 
sight distance (ASD) and theoretical sight distance, emphasizing the 
inclusion of operating speed in sight distance and assessing horizontal 
curve design risks based on non-compliant sight distance patterns. 
Alsaleh (Alsaleh et al., 2024) also used reliability theory to analyze 
sections of road that do not meet vehicle skid resistance requirements. 
The results showed that CR were higher in these non-compliant areas. In 
specific road sections such as interchanges and work zones, vehicles 
passing through these areas may be disturbed by mandatory lane change 
operations (Feknssa et al., 2023). It is more appropriate to consider the 
lateral acceleration/deceleration of disturbed vehicles as a safety sur-
rogate. Yan (Yan et al., 2024) demonstrated the relationship between 
lateral acceleration of vehicles in these areas and crashes, showing that 
when lateral acceleration exceeds 0.7 g, the potential risk of crashes 
increases by 24 times. However, several studies have tested using 
smartphone GPS data, indicating that the use of yaw rate in these areas is 
more significant in predicting CR than measures based on lateral ac-
celeration. This is because yaw rate describes the driver’s steering op-
erations when deviating from the road centerline. In avoiding crashes, 
drivers typically steer first and then brake, suggesting that steering op-
erations may be more critical in crashes avoidance (Naude et al., 2019). 
Overall, the robustness of these kinematic trigger surrogates under 
different road geometries is relatively low, likely due to an insufficient 
understanding of the interaction between road geometry design and 
driver behavior. Additionally, in complex road geometries, there are 
multiple complex patterns such as lane changes, yawing, and vehicle 
oscillation (Ding et al., 2022). Current vehicle kinematic alternatives 
only focus on a single dimension of vehicle motion, and the feature 
extraction of trajectories themselves has yet to be fully explored.

2.2. Fractal theory

Fractal theory focuses on the complexity of trajectory geometric 
features and the high-dimensional nature of analysis methods (Yilmaz 
and Unal, 2020). In the field of road safety and traffic, Chand (Chand 
and Dixit, 2018) demonstrated that the Hurst exponent, measured using 
a rescaling method, is significantly correlated with CR. However, the 
Hurst exponent is only used to describe the overall trend and fluctua-
tions of one-dimensional data, making it unsuitable for capturing the 
complex behaviors of two-dimensional vehicle trajectories. The FD, 
derived from rescaling methods, provides a means to quantify the fractal 
characteristics of two-dimensional vehicle trajectories (Karimui, 2021). 
Fractal characteristics can indicate the scaling characteristics of fractals 
in different signals of complex systems, providing a powerful tool for 
understanding the underlying hierarchical structures and multiscale 
behaviors in complex systems (Gvozdarev and Parovik, 2023). 
Compared to deep learning methods, FD has been proven to be an 
effective feature-based approach. Feature-based recognition does not 
result in high computational complexity, making it more attractive for 
applications with limited resources, such as the Internet of Things (Li 
et al., 2024a). Previous studies have shown that combining FD with 
other features can enhance the accuracy of signal recognition. For 
example, Li (Li et al., 2024b) demonstrated that combining FD with 
other radiative characteristics improves the identification accuracy of 
wireless devices. Therefore, the most accurate and comprehensive re-
sults often require integration with other features. As a nonlinear 
feature, FD can also represent physical properties. For example, Zhang 
et al. (Zhang et al., 2023a) demonstrated that FD, as a parameter for 
characterizing discontinuous roughness, can be used to predict the 
specific physical properties of heterogeneous materials. These studies 
highlight the commonality of fractal methods: fractal techniques refine 
the granularity of data analysis and enhance the dimensionality of 
feature analysis, providing valuable insights for the safety analysis of 
vehicle trajectory data. Furthermore, the fluctuation range of vehicle 
trajectory shapes remains within the road boundaries, which indirectly 

reflects the road’s geometric alignment. Therefore, fractal methods take 
into account the interaction between driving behavior and road geo-
metric design, making them a potentially more effective indicator for 
quantifying the road safety.

There are several methods for calculating FD, but the most widely 
accepted ones are Katz (Li et al., 2024a), box-counting (Sui et al., 2022), 
and Higuchi (Yilmaz and Unal, 2020). Compared to Katz and box- 
counting methods, the Higuchi method has an advantage in capturing 
trajectory complexity, integrating multiscale features, and nonlinear 
behaviors (Yilmaz and Unal, 2020). This method does not rely on pre-
determined scales, offering high adaptability, and is especially suitable 
for estimating the FD of two-dimensional trajectory sequences. Addi-
tionally, the sampling frequency of the data is a critical aspect in 
calculating FD. Karimui (Karimui, 2021) compared trajectories obtained 
from the Weierstrass cosine function at sampling frequencies of 1000 Hz 
and 3000 Hz and found that trajectories generated from low-frequency 
sampling were unsuitable for validating the estimator. Another chal-
lenge of the Higuchi method is that several parameters must be applied 
to it, and improper parameter selection can lead to incorrect computa-
tion of fractal features (Bahramizadeh-Sajadi et al., 2022). These fractal 
parameters include scale and reduction size. Multiscale parameters are a 
multi-channel representation of the complexity of time series, consid-
ering the local structure and overall distribution features of fractal ob-
jects. Yilmaz et al. (Yilmaz and Unal, 2020), inspired by multiscale 
sample entropy, proposed a multiscale method capable of accurately 
identifying specific categories of random and chaotic time series. 
However, as the reduction size increases, this traditional multiscale 
process shortens the length of coarse-grained sequences, thus reducing 
stability. Therefore, Li et al. (Li et al., 2024c) applied a fine composite 
multiscale process to FD and proposed a hierarchical fine composite 
multidimensional FD, which improved the performance of SRN in 
feature extraction. Moreover, the reduction size parameter represents 
the sampling length of subsequences at different scales. If the maximum 
value is not correctly selected, the method will be compromised from the 
start (Wanliss and Wanliss, 2022). A common approach to determining 
the maximum value involves finding a position relative to the range 
where the computed values approach a local maximum or asymptote 
(Macek et al., 2023). In summary, the selection process requires 
continuous testing.

The evaluation of safety surrogates in highway includes three points 
(Pinnow et al., 2021): First, the ability to identify crash locations as 
indicated by historical data or observational results, where the data or 
observations are not recognized through the surrogates. Second, the 
safety surrogates must be robust enough to reliably identify high-risk 
areas under varying external conditions (e.g., geometric design, time, 
driver heterogeneity). Third, when identifying high-risk areas in a spe-
cific context, the surrogates should demonstrate superior performance 
compared to other indicators. This study aims to argue for the promising 
application of fractal methods in road safety analysis from these 
perspectives.

3. Methodology

3.1. The concept of fractal vehicle trajectory

In the road plane, trajectories can be represented as tuples composed 
of x and y projection coordinate sequences. We define the Euclidean 
distance di between adjacent points on a trajectory as: 

T = {(x1, y1), (x2, y2), ..., (xN, yN)} (1a) 

di =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi+1 − xi)
2
+ (yi+1 − yi)

2
√

(1b) 

The FD is related to the scale of the system, so we introduce a scale 
parameter ∊ to describe the geometric properties of trajectories at 
different resolutions. We investigate how the geometric features of the 
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trajectory change when reducing ∊. Hausdorff method (Cheng et al., 
2024) gives the general form of FD calculation, that is, a set of geometric 
structures (such as line segments, grids, spheres, etc.) can be used to 
represent the covered trajectory. If N(∊) is the minimum number 
required to cover the trajectory with a geometric structure of scale ∊, 
then the core idea of FD calculation is to observe the rate of change of 
N(∊) as ∊ shrinks. Therefore, vehicle trajectories exhibit fractal charac-
teristics, equivalent to the existence of the limit of the following 
equation: 

N(∊)∝∊− FD (2a) 

FD = lim
∊→0

logN(∊)
log(1/∊)

(2b) 

The self-similarity of fractal structures can be verified through 
scaling laws (Li et al., 2022). If the FD calculated through different scales 
∊ is stable, then the trajectory has fractal characteristics; If there is a 
drastic change with the change of ∊, the trajectory does not have or has 
weak fractal characteristics. Therefore, use the following equation to 
determine: 

P(d) d− α (3) 

Here α is a scaling index. By calculating the distance distribution 
between trajectory points, if the distribution exhibits power-law char-
acteristics, then the trajectory has fractal characteristics.

The calculation methods of fractals mainly include the ratio method 
(Katz), the coverage method (box-counting), and the trajectory length 
scaling law (Higuchi). The driving trajectory of vehicles passing through 
different road sections is influenced by road alignment, structures, and 
traffic flow status, which intuitively reflects the different FD of the 
vehicle in different road sections. A higher FD reflects more complex 
vehicle behavior, which can indirectly reveal the influence of spatio-
temporal factors on traffic flow characteristics.

3.2. Quantitative methods for fractal characteristics

3.2.1 Katz method

Katz fractal dimension(KFD) is a method of evaluating the 
complexity of a path by comparing its total length with its diameter. Its 
algorithm is relatively simple, easy to implement, and suitable for 
coarse-grained analysis. The calculation process of KFD is as follows:

For the time series T, calculate the length of the sequence, which is 
defined as L. Calculate the direction vectors of the trajectory as a whole 
and the road according to Equation (4), as shown in Fig. 1. Then, the 
maximum distance d between the first point and the i-th point is: 

Trajectorydr
̅̅̅̅̅̅̅̅→

= (xN − x1, yN − y1) (4a) 

Roaddr
̅̅̅̅→

= (Xroad,Yroad) (4b) 

d =
Trajectorydr
̅̅̅̅̅̅̅̅→

‖Trajectorydr‖
̅̅̅̅̅̅̅̅̅̅→Roaddr

̅̅̅̅→
(4c) 

KFD can be calculated according to the following equation: 

KFDTrajectory =
log(N)

log(N) + log(d
L)

(5) 

3.2.2. Box-counting method
The box-counting method estimates the FD by covering fractal 

structures in boxes of different sizes and calculating the required number 
of boxes. Estimate the FD of road spatial trajectory through pre-defined 
box sizes using image methods. A grid with uniform intervals of δ covers 
the designated road space. As shown in Fig. 2, for different values of δ, 
determine the number of boxes (N(δ)) related to fracture, and then 
calculate Box fractal dimension (BFD) using the Equation (6): 

N(δ) δ− FD (6a) 

BFD = − lim
δ→0

(
lnN(δ)

lnδ
) (6b) 

The application of logarithms to the above equation reveals a linear 
correlation between the total number of boxes required to fully cover the 
road trajectory and the box size (unit of measurement).

The parameters of the Box algorithm must determine the minimum 
and maximum box sizes, as well as the method of increasing box sizes. 
We select the length of the analyzed road unit and the interval between 
the boundary lines of the selected road horizontally as the maximum box 
size, and then set the degree of box increase proportionally.

3.2.3. Higuchi method
The Higuchi method first calculates the average length (Lk) of the sub 

trajectories, which is obtained by reducing the main trajectory in a 
specific set of scales (k = k1, ..., k2), equivalent to the average of the 
actions that occur in the sub trajectories extracted for a specific scale (k).

Set the time series X = {xi, i = 1,2, ...,N} and Y = {yi, i = 1,2, ...,N}

with a length of N, reconstruct the time series using the delay method, 
and obtain the matrix Tm,k in the form of: 

Tm,k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X(m) Y(m)

X(m + k)

X(m + 2k)

...

X(m + int(
N − m

k
)k)

Y(m + k)

Y(m + 2k)

...

Y(m + int(
N − m

k
)k)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, m = 1, 2, ..., k

(7) 

Where k is the delay time and m is the index of the starting point of 
each subsequence.

Then calculate the curve length Lm(k) for each Xm
k , which can be 

obtained through Equation (8): 

Lk(Tm,k) =
1
k
∑[

N− m
k ]

i=1
‖T(m + ik) − T(m + (i − 1)k‖

N − 1
[N− m

k ]k
(8) 

Among them, ‖T(m+ik) − T(m+(i − 1)k‖ represents the Euclidean 
distance between adjacent trajectory points, ⌊*⌋ represents rounding 
downwards, and N− 1⌊

N− m
k

⌋

k 

is a normalization factor used to adjust the curve 

length so that it corresponds to the overall length of the time series.
Generate the average value L(k) of the curve length Lk(Tm,k) for all 

sequences Tm,k: 

L(k) =
1
k
∑k

m=1
Lk(Tm,k) (9) 

Finally, obtain a set of data on L(k) with different values of k; Draw 
the curve lb(L(k)) lb(k). By fitting the line lb(L(k)) = HFD× lb(k) + C, 

Fig. 1. KFD calculation method.

Y. Nie et al.                                                                                                                                                                                                                                      Accident Analysis and Prevention 215 (2025) 107989 

4 



obtain the HFD values of the time series; The value of HFD is estimated 
by the following equation: 

HFD = − lim
k→∞

log(L(k))
log(k)

(10) 

Therefore, HFD is an effective tool for analyzing the impact of 
different driving maneuvers on the complexity of driving behavior. But 
we need to analyze its parameter changes and develop specific methods 
to control the parameters, which is a prerequisite for applying it to 
fractal analysis of road trajectories.

3.3. Parameter estimation

The maximum value for reducing the size k (k2) is an important 
parameter, as selecting an inappropriate value can significantly increase 
errors. This empirical value comes from the relationship graph between 
HFD and the range of k2 drawn, and then selects the appropriate k2 at the 
position where the calculated HFD approaches the local maximum or 
asymptote. In addition, k1 refers to the minimum value of the sample 
selected for fitting length changes at different scales. If k1 exceeds half of 
the window length, the observation is insufficient, causing the length 
algorithm of the sequence to be interrupted prematurely, resulting in 
underfitting of the line. Therefore, k1 is not greater than twice the value 
of k2. Some studies have also shown that if the minimum value k1 of the 
window length is too small, the linear variation of the fitted log(Lk) value 
with the proportion of k weakens, which can lead to oscillation and 
instability of the FD value. The estimation of HFD is considered as a 
function of k2 and k1, as shown in the following equation: 

HFD(k1, k2) = lim
k1≤k≤k2

log(L(k))
log(k)

(11) 

Scale (s) is an important parameter in fractal analysis. If s is too 
small, the amplitude of the vehicle trajectory swinging in adjacent time 
intervals will increase, resulting in unstable trajectory signals, which 
will increase the interference of noise on fractal calculations; In addi-
tion, if s is too large, it will also overwrite the changing properties of the 
trajectory itself, which means that objects created at a large scale may 
not be fractal objects, making it impossible to reflect the complexity of 
the trajectory. Therefore, we need to set different scales for the trajec-
tory, and the algorithm is as follows:

Step 1: Divide the time series T = (X,Y) = {t1, t2, ..., tN} into new 
subsequences by setting different scales: 

t(s)j =
1
s
∑js

(j− 1)s+1
ti, 1 ≤ j ≤

N
s

(12) 

It is worth noting that when s = 1, the subsequence is the same as the 
original sequence.

Step 2: Input each subsequence into Section 3.2.3 to calculate the 
HFD value at scale s: 

MHFD(T, s) =
1
s
∑s

d=1
HFD(T(s)) (13) 

And T(s) = {t(s)1 , t(s)2 , ..., t(s)N
s
} is the sequence obtained by executing 

Equation (12) at T(s). To better illustrate the multi-scale processing 
technique, we take Fig. 3 as an example. Since Scale 1 is the original time 
series, at Scale s, s points of continuous data are treated as one point to 
reconstruct the trajectory. Due to this downsampling, the data length at 
each scale has been shortened.

In order to determine the optimal parameters for road units of 
different lengths, we established a multi-objective evaluation function 
and considered the spatial autocorrelation, discriminability and reli-
ability of the trajectory FD of different road units for automatic 
parameter selection.

According to the literature (Gedamu et al., 2024), considering the 
spatial autocorrelation of crash frequency, this paper optimizes fractal 
parameters by local Moran index to enhance the spatial autocorrelation 
of FD, so as to better simulate the distribution law of crashes. Therefore, 
the objective function J1 is maximized. 

J1 =
N
W

⋅
∑N

i=1
∑N

j=1wij(FDj − FD)(FDi − FD)
SFD

(14a) 

Where J1 is the total autocorrelation measure. N is the total number 
of road spaces. wij is the spatial weight of the i-th and j-th spaces. W is the 
sum of all weights wij, and the weights use Gaussian kernel function. FDi 

is the average value of FD in the i-th space. FD is FD of all spaces. SFD is 
the standard deviation of FD mean.

In order to better reflect similar road geometry designs or complex 
weather conditions, we refer to the idea of unsupervised learning (Chen 
et al., 2022a); The goal is to have high similarity between different 
trajectory FD within the same road section. In addition, in order to 
effectively distinguish the trajectory characteristics of different road 
sections, we set the FD of different road units to have significant dif-
ferences as much as possible. Therefore, we use J2 and J3 to represent 
these two objectives. 

J2 = |
1

Nrisk

∑Nrisk

i=1
FDrisk

i −
1

Nnormal

∑Nnormal

i=1
FDnomarl

i | (14b) 

J3 =
∑K

i=1
|

1
Nrisk

i

∑Nrisk
i

j=1
fdrisk

ij −
1

N − Nrisk
i

∑N− Nrisk
i

j=1
fdnormal

ij | (14c) 

Among them, fd is a function of k1, k2, s, and Nrisk is through crash 
prone road sections; And Nrisk is the risk trajectory of the i section passing 
through the velocity marker.

In addition, the selection of the s parameter must satisfy the statio-
narity condition of FD, which provides a convergence criterion for 
evaluating saturated FD in the sense of least squares fitting error (Gao 
et al., 2023): 

Fig. 2. BFD calculation method.
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|fdij(s, k1, k2) − fdij(s + 1, k1, k2)| < e (14d) 

And the trajectory should have significant fractal characteristics, as 
shown in the following equation: 

R(s, k1, k2) > 0.9 (14e) 

R is the degree of fit between log(Lk) and k relationship under 
parameter selection. Therefore, we maximize the objective function J4: 

J4 =
∑M

i=1

∑ni

j=1
Rij(s, k1, k2) (14f) 

In addition, k1, k2, and s need to satisfy the following relationship in 
the vehicle trajectory data: 

1 ≤ k1 ≤ 0.5k2 (14g) 

3 ≤ k2 ≤
(11 − s)L

2v 

1 ≤ s ≤ 12 (14i) 

Among them, k2 cannot exceed half of the number of trajectory 
points, and the limitation of s is that the sampling frequency range of 

trajectory data is 0.25HZ-10HZ. In summary, we establish the final 
multi-objective function as shown in Fig. 4.

The four items in the figure represent the spatial autocorrelation, 
within group variance, between group variance, and significance of 
fractal characteristics, where β1, β2, β3, and β4 are the weight co-
efficients of each objective in the multi-objective function, with values 
ranging from 0 to 1 and a total of 1. Under different data sampling 
frequencies and analysis unit lengths, we can adjust the four weight 
coefficients to find the optimal FD.

3.4. Evaluation metrics

Based on the large-scale characteristics of the trajectory data of the 
floating vehicle, the CR (Alsaleh et al., 2024) is considered as the veri-
fication measure of the safety analysis, and is calculated according to 
Equation (15): 

CRi =

∑5
Year=1CFYear,i

[
∑5

Year=1AADTYear,i × Li × 365]/108
(15) 

Where CFYear,i is the number of crashes, Li is the length of the curve 
(km), and AADTYear,i is the annual average daily traffic volume.

Fig. 3. Multi scale transformation process of trajectory.

Fig. 4. Multi objective function optimization of fractal parameters.
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In order to quantitatively analyze the prediction results, the road 
sections are divided into high-risk and low-risk groups according to the 
historical crash data, and the output of the model is analyzed by 
checking the recognition accuracy of high/low-risk road sections. 
Referring to another document (Liu et al., 2020), the average value of 
historical CR is positioned as the threshold of high risk and low risk. If 
the crash risk value of the road section is less than the threshold value, 
the road section is “the road section with relatively low crash risk” 
(Note: low risk); Otherwise, it is “road section with relatively high crash 
risk” (Note: high risk).

The confusion matrix is used to evaluate the performance of the 
current surrogates and the proposed metrics. The confusion matrix 
consists of four basic elements: true positive (TP), true negative (TN), 
false positive (FP) and false negative (FN). TP is the number of crash 
samples correctly predicted, FN is the number of crash samples incor-
rectly predicted as normal crash samples. FP is the number of normal 
samples that are incorrectly predicted as crash samples. TN is the normal 
number of samples correctly predicted. Based on the confusion matrix, 
three widely accepted indicators are calculated: recall rate (Recall), false 
alarm rate (FAR) and area under the curve (AUC). Recall refers to the 
proportion of correctly detected crashes in the total real crash samples, 
which is defined as: 

Recall =
TP

TP + FN
(16a) 

FAR measures the proportion of low-risk road sections that are 
incorrectly detected as high-risk road sections in all low-risk road sec-
tions, which is defined as: 

FAR =
FP

TP + TN
(16b) 

The receiver operating characteristic (ROC) curve more intuitively 
evaluates the performance of the indicator (Wang et al., 2024c). The 
curve is constructed by plotting the relationship between Recall and 
false alarm rate (FAR) under different thresholds. The area under the 
ROC curve (AUC) is used as a quantitative index to compare the overall 

performance of different indicators. The maximum AUC value is 1, and 
the index with larger AUC value is considered to be a better method to 
predict the risk section.

4. Experimental result

4.1. Data collection and processing

The trajectory data we use comes from a management company of a 
highway in China. The company operates a fleet of trucks (724 vehicles), 
each equipped with GPS and forward-facing cameras. These trucks are 
deployed to the company’s jurisdiction to carry out freight tasks. The 
recorded data is continuously uploaded to the company’s data man-
agement platform, as shown in Fig. 5(a). Fig. 5(b) illustrates that the GPS 
vehicle trajectories spatially cover over 160 km of the highway mainline 
and 38 interchanges. These sections include crash event data from the 
past five years, totaling 4,645 incidents. This data has been manually 
input into the system by traffic police, road management departments, 
or company personnel. The crash event data for most sections has a 
location accuracy of 1 km. To investigate the accurate relationship be-
tween FD and road safety, we divided the entire section into 1-kilometer 
sub-sections, resulting in a total of 314 sub-sections. Table 1 presents 
basic information about the trajectory data and other related datasets.

The time span of the vehicle trajectory data covers from June 1, 
2023, to September 1, 2023. The number of vehicle trajectories collected 
for each road segment ranges from 304 to 756. These trajectories are 
continuous and evenly distributed within the collection period, with a 
penetration rate ranging from 2 % to 5 %. Furthermore, based on the 
traffic volume data recorded hourly by traffic measurement stations or 
gantry systems, the road section approximates a free-flow traffic state, 
and the trajectories of merging and diverting vehicles are not included in 
the analysis. To further enhance the spatial representativeness of the 
trajectory data, we excluded vehicle trajectories influenced by sur-
rounding vehicles, crash events, and work zones, using data from the 
vehicles’ onboard cameras and event records.

Our data includes basic information such as latitude and longitude, 

Fig. 5. Large-scale telematics trajectory data: (a) Trajectory data collection; (b) Large scale space–time; (c) Road line fitting and match map.
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vehicle ID, vehicle speed, and heading angle. As shown in Fig. 5(c), we 
use the “Pyautocad” library in Python to display trajectory points on a 
CAD map, and then perform coordinate projection transformation to 
align with the Ovi map. Our road sections contain rich geometric in-
formation, including diverse horizontal and vertical elements as well as 
highway nodes, which can be matched to vehicle trajectories through 
coordinates. Compared to the HighD (Zhang et al., 2023b) and NGSIM 
(Chauhan et al., 2022) datasets, our trajectory data stands out for its 
large-scale coverage, full-time domain, ease of access, and abundant 
information.

The trajectory data has a sampling frequency of 1 Hz, with posi-
tioning accuracy within a range of 5 m. Anomalies in the GPS data 
include large temporal delay errors, GPS positioning errors, and signal 
loss. We applied a local anomaly factor method to eliminate inherent 
GPS anomalies (Arman and Tampere, 2022). Additionally, for issues 
related to system lateral offset caused by GPS signal in certain road 
sections, we used the method proposed in the literature to address this 
problem (Arman and Tampere, 2021). Specifically, as shown in Fig. 5(c), 
we determined the road centerline based on a dissimilarity matrix 
(Fréchet distance between trajectories) and employed a two- 
dimensional clustering method based on Gaussian Mixture Models to 
identify road lanes based on actual trajectories. After applying these 
strategies, we were able to reduce the lateral GPS error to below the 
width of standard lanes in the highway network.

4.2. Trajectory fractal characteristic extraction

4.2.1. Verification of fractal characteristics
Due to the need to divide the trajectory into subsequences at 

different scales for fractal computation, if the length of the road unit is 
too small, the number of sampled points in the trajectory sequence with 
a low sampling frequency may not meet the minimum required for 
calculating the FD. To address this issue while preserving data authen-
ticity, we use linear interpolation to fill data. The trajectory is then 
transformed into the Frenet coordinate system, as shown in Fig. 6(b), to 
eliminate the influence of fixed road curvature changes on the vehicle 
trajectory shape (Wang et al., 2024d).

Fig. 6 illustrates the process of calculating the FD of vehicle trajec-
tories. We computed the FD of 50 vehicle trajectories over a 1 km road 
segment and selected one trajectory for analysis using both the box- 
counting and Higuchi methods. As shown in Fig. 6(a), the relationship 
between Log(δ) and Log(N(δ)) was fitted to analyze the variation of the 
geometric characteristics of vehicle trajectories at different resolutions. 
The slope of the fitted line indicates that the p-value is less than 0.05, 
suggesting that the trajectory exhibits significant fractal characteristics. 
Similarly, we verified that all the trajectories from the road segments 
demonstrated significant fractal characteristics. 

4.2.2 Fractal parameter estimation

Parameter estimation is an important component of FD calculation, 
and we adopt the fractal parameter estimation method in Section 3.3. 
We used a road unit length of 1 km as an example for parameter esti-
mation. The main reason for choosing k1 is to prevent a too small k1 from 
weakening the linear variation of the fitted logarithm (Lk) value with the 
proportion of k. But in our parameter estimation, k1 is not the main 
parameter, it varies between 1–3 with the objective function (The best k1 
of the data in this paper is set to 2). The parameter s usually represents 
the sampling interval (scale of the data), and the smaller the parameter s, 
the larger the sampling interval. Specifically, we selected a scale of 1 to 
11 for analysis after data interpolation, which represents the frequency 
range of 10 Hz to 0.25 Hz. Therefore, Table 2 lists the effects of changes 
in the main parameters s and k2 on the objective function, where we 
selected harsh braking and harsh acceleration behaviors as the risk 
trajectory criteria for J2 and J3 (Xian et al., 2023). In addition to the 
objective function, we also use Wasserstein distance as an evaluation 
metric to test the similarity between vehicle trajectories within the same 
road segment and the discrimination between different road segments in 

Table 1 
Basic information statistics of data.

Elements Max Min Mean Sum

Frequency of crash occurring on road sections 
within 5 years

89 0 11 4645

Length of road segments (km) 1 1 1 160
The number of road segments − − − 314
The trajectories time span of each road segment 

(day)
90 90 90 90

Sample size of trajectory for road sections 756 304 546 −

Speed limit value (km/h) 120 40 − −

Number of lanes 2 2 2 −

The number of tunnels 1 0 0.03 3
The number of interchanges 1 0 0.19 38
The number of service area 1 0 0.08 15
1 (Contains reverse curve),0 (Excluding reverse 

curve)
1 0 0.12 24

Curvature radius (m) 8515 750 4695 −

Number of curves 1 0 0.58 158

Fig. 6. Example of measuring FD of vehicle trajectory: (a) Fractal scaling process; (b) Vehicle trajectory FD of 1 km road length.
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FD. The smaller the value of the Wasserstein distance indicator, the 
greater the similarity between the two distributions. However, HFD is 
also difficult to choose between these two relationships. We tested 
several different values of s and k2 in the Higuchi model. In order to 
minimize the overall objective function, s and k2 are set to intermediate 
values of 8 and 9, respectively.

To validate our proposed parameter estimation approach, we used a 
negative binomial regression (NBR) model (Dzinyela et al., 2024) to 
predict crash frequency. In this example, the HFD mean and standard 
deviation in the road section are used as explanatory variables in the 
NBR model, with crash frequency as the dependent variable. The 
calculation of the HFD mean and standard deviation in the road section 
has undergone Monte Carlo error testing (Zhu et al., 2022), which means 
that as the sample size increases, their deviations will decrease, and the 
sampling volume will ultimately reduce the final deviation to below 3 %. 
Table 3 displays the output of the NBR model. The p-values indicate that 
the model’s parameters are statistically significant. Moreover, the HFD 
mean has a stronger effect on crashes than the HFD standard deviation in 
the road section, with the HFD standard deviation being significant only 
at the 0.1 level. We use this model to examine the impact of fractal 
parameters on the model.

As shown in Fig. 7, smaller s will reach a minimum at smaller k2, for 
example, the mean square error (MSE) value of curves such as s set to 4 
decreases as k2 increases from 0 to 6; However, the MSE of the model 
with s set to 12 continues to decrease when k2 is set to 0–11. These 
phenomena are due to the fact that the smaller value of s increases the 
local details of the trajectory, and a smaller k2 can improve the model’s 
ability to capture fractal characteristics; The local morphology of the 
trajectory observed under larger s is coarse-grained, which requires a 
larger k2 to improve the fitting degree. Overall, the HFD measurement 
model with k2 of 9 and s of 8 has the best performance, and the 
parameter estimation approach has been well validated. However, 
further increase in k2 after the minimum may reduce prediction accu-
racy and even cause fluctuations in MSE, indicating that larger k2 is not a 
reliable choice for estimation. In most cases, k2 is suboptimal between 
6–10. Moreover, the choice of s is even more important. The model when 
s set to 12 seems unstable because the MSE value is very high, and even 
choosing the best k2 will not perform well. Therefore, the s parameter is 
very important, which can be adjusted by adjusting the number of 
interpolation points or using a higher frequency data acquisition device 

to adjust s.

4.2.3. Comparison of fractal methods
We conducted an experiment to investigate the relationship between 

different types of FD and vehicle trajectory features. We selected 
representative features from the velocity category of the trajectory, 
including the standard deviation of speed (SDV), the standard deviation 
of acceleration (SDACC), the 85th percentile speed (V85) (Kim et al., 
2024), as well as vehicle position transformation features, such as yaw 
rate (YAW) (Naude et al., 2019). These velocity indicators are used as 
longitudinal motion characteristics, while YAW is used as lateral motion 
characteristics.

As shown in Fig. 8, a comparison of the trajectory feature indicators 
mean in the road section and the correlation matrix of individual vehicle 
trajectory features reveals the relationship between fractal trajectory 
features and kinematic features. In Fig. 8(a), the HFD mean in the road 
section shows a positive correlation of 0.65 with SDV , but in the results 
of Fig. 8(b), the correlation between individual vehicle trajectory HFD 
and SDV is only 0.24. This highlights the distinguishing power of HFD 
from kinematic triggers. In the results shown in Fig. 8(b), BFD and KFD 
are most strongly correlated with V85 (− 0.74) and SDACC (0.38), 
respectively. This sugg1ests that KFD reflects the amplitude of acceler-
ation fluctuations in the trajectory and is consistent with the complexity 
of the trajectory path described by the method. BFD may be closely 
related to road congestion indicators, such as vehicle travel time, which 
is similar to the findings of Hurst Exponent (Chand and Dixit, 2018). 
Among the three types of FD, the HFD mean in the road section has the 
highest correlation with CR, reaching 0.26, while the correlation of 
other fractal features with CR is low. Therefore, this paper focuses on 
using HFD as a tool for safety analysis.

4.3. The results of fractal characteristics in identifying high-risk road 
sections

4.3.1 Visual analysis and variance test of fractal characteristics

This section conducts an empirical analysis of the relationship be-
tween the trajectory features mean in the road section and high-risk road 
segments. Road segment 2 (C2), identified as a high-risk segment, is 
compared visually with six normal low-risk segments (C1-C6). As shown 
in Fig. 9(a) and Fig. 9(b), low-risk segments exhibit similar driving 
characteristics to C2 in terms of SDV and YAW. Fig. 9(c) reveals that the 
HFD of C2 significantly exceeds the values of the low-risk segments. This 
finding suggests that fractal features may serve as a potential tool for 
identifying high CR segments.

The HFD mean in high-risk and low-risk sections is shown in Fig. 10
(a). Apply analysis of variance to determine the correlation between the 

Table 2 
Evaluation of the influence of fractal parameters on fractal estimation.

FD distribution Objective function

s within-subjects between groups J1 J2 J3 J4

4 0.01 0.86 0.03 0.37 0.18 0.08
6 0.02 0.46 0.04 0.40 0.13 0.04
8 0.17 0.18 0.06 0.39 0.05 0.27
10 0.49 0.06 0.11 0.22 0.01 0.71
12 0.25 0.01 0.08 0.18 0.03 1.27
k2 within-subjects between groups J1 J2 J3 J4

3 0.10 2.46 0.11 0.43 0.48 1.13
6 0.14 2.15 0.12 0.41 0.28 1.26
9 0.21 1.83 0.15 0.40 0.19 1.32
12 0.31 1.35 0.17 0.37 0.06 1.36
15 0.41 1.57 0.20 0.33 0.09 1.55

Table 3 
The results of the negative binomial regression model.

variables Coef. St. 
Err.

t- 
value

p- 
value

Sig

The HFD mean in the road section 10.52 1.69 3.54 0.002 ***
The HFD standard deviation in the 

road section
2.05 0.47 1.83 0.011 *

Constant 1.24 0.20 45.61 0.000 ***

***p < 0.01, **p < 0.05,*p < 0.1.

Fig. 7. Sensitivity analysis of fractal parameters for crash prediction.
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Fig. 8. Comparison of Correlation between Trajectory Features: (a) The trajectory features mean in the road section; (b) Single trajectory features.

Fig. 9. Comparison results between section 2 (C2) and low-risk study section (C1-C26): (a) SDV ; (b) YAW; (c) HFD.

Fig. 10. (a) A graphical representation of the of HFD mean for all road segments; (b) the results of the analysis of variance test.
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of HFD mean in the road section and the risk of highway crash. The 
results of Fig. 10(b) indicate that the HFD mean (1.75) in high-risk road 
segments is significantly higher than low-risk segments, indicating that 
the higher the HFD of vehicle trajectories, the higher frequency of 
crashes on the road sections.

In addition, six low-risk road sections (i.e. C7-C12) were selected, but 
the difference is that the HFD of these sections are higher than C2. 
Except for C12, its SDV and YAW values are similar to those of C2. Fig. 11
(c) shows that in these low-risk road sections, the standard deviation of 
HFD is lower than that of C2. The standard deviation of HFD reflects the 
diversity of vehicle driving behavior in the same section, and higher 
values may indicate significant differences in driver behavior.

To confirm this statement, a variance analysis test was conducted, 
and the results are shown in Fig. 12. The research results indicate that 
the standard deviation of HFD in high-risk road sections (1.31) is 
significantly higher than that in low-risk road sections (1.23). This result 
means that when the vehicle trajectory HFD is more variable, the fre-
quency of crashes on the road section.

4.3.2. Comparison of macroscopic safety surrogates
To explain the differences in identifying high-risk road sections 

among different surrogates, we selected two types of macroscopic sur-
rogates as comparison baselines: surrogates related to road geometry 
design, vehicle kinematic trigger surrogates. The surrogates related to 
road geometry design has chosen sight distance conformity degree 
(CDSD) and anti-skid requirement conformity degree (CDSK) (Alsaleh 
et al., 2024). CDSD is the percentage of the ASD of the vehicle that can 
meet the parking stop sight distance requirements (Chen et al., 2022b); 
The calculation of CDSD takes into account the operating speed, road 
radius, and longitudinal slope. The calculation of CDSK takes into ac-
count road radius, superelevation, and vehicle operating speed to reflect 
vehicle rollover, stability, and driving comfort. The relationship be-
tween these patterns and safety outcomes (i.e. crashes) is significant.

There are many kinematic trigger surrogates. Regarding them, Kim 

(Kim et al., 2024) listed a table that includes velocity characteristics, 
position offset feature and dangerous driving events. We generate SHAP 
values based on the XGBoost model (Wu et al., 2024) to select the top 
ranked features. Specifically, negative jerk (LPJ) is selected as the speed 
feature, harsh braking event (HB) (Ziakopoulos, 2024) is selected as the 
frequency of dangerous driving events, and yaw rate (YAW) (Alruwaili 
and Xie, 2024) is selected as position offset feature. The jerk of trajectory 
speed reflects the variability of vehicle driving, and this information can 
be successfully applied to crash risk analysis without relying on 
threshold determination and road geometry features. HB is classified as 
a decrease in speed, with the threshold for HB varying from 0.2 g (1.96) 
to 0.86 g (8.43 m/s2), where 0.51 g and 0.66 g correspond to medium 
risk and high-risk road segments (Kamla et al., 2019); There will be more 
frequent dangerous driving behaviors on high-risk road sections. Ac-
cording to the correlation test of risk road sections, HB selected 0.55 g as 
the optimal thresholds for classifying hazardous events.YAW is related 
to the steering wheel angle and describes the driver’s lateral positional 
deviation on the road to avoid crashes.

Fig. 13 shows that HFD exhibits significant stability in high-risk road 
sections, with limited fluctuations in its values. If 1.6 is chosen as the 
threshold, only 8 % of the scatter points below 1.6 are present. In 
contrast, other surrogates on high-risk road sections exhibit significant 
volatility. This finding suggests that the selected surrogates may be 
influenced by other factors that have not been considered, and fractal 
methods can effectively explain crash risk by enhancing the trajectory 
analysis dimension to comprehensively reflect the trajectory driving 
characteristics, thereby obtaining reliable results. The threshold may 
affect the performance of surrogates. Relaxing the threshold may lead to 
a higher Recall for high-risk road sections, although it may also increase 
the FAR for low-risk road sections. Due to the spatial limitations of 
previous trajectory data, there is currently no reference for evaluating 
thresholds. Therefore, we have set all surrogates thresholds within the 
range of minimum to maximum values. 

Fig. 11. Comparison results between C2 and low-risk study section (C7-C12): (a) SDV ; (b) YAW; (c) HFD.
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4.3.3 The tradeoff between Recall and FAR

Fig. 14 shows the Recall and FAR of each surrogate at different 
thresholds. The optimal threshold needs to ensure the desired Recall (set 

to 95 % in this study) while minimizing the FAR in low-risk road 
segment detection. As shown in Fig. 14(a), a threshold of 1.68 for HFD 
achieves a 95 % Recall and a minimal FAR of 46 %, making 1.68 the 
optimal threshold for HFD. When the Recall is set to 95 %, HFD has the 

Fig. 12. (a) Diagram of HFD standard deviation for all road sections; (b) the results of the analysis of variance test.

Fig. 13. The values of HFD and survey surrogates in high-risk road sections.
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Fig. 14. The relationship between the Recall of various surrogates and FAR.

Fig. 15. ROC curves of HFD and surrogates.
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lowest FAR (46 %) compared to CDSD (72 %), CDSK (94 %), LPJ (80 %), 
HB (83 %), and YAW (52 %). Implementing a stricter threshold reduces 
FAR but comes at the cost of Recall. For example, when the desired 
Recall is relaxed to 90 %, the FAR values for HFD, CDSD, CDSK, HB, LPJ, 
and YAW decrease to 28 %, 58 %, 79 %, 54 %, 75 %, and 44 %, 
respectively.

Fig. 15 displays the ROC curve and the corresponding AUC values, 
which visually compare the performance of these metrics. The AUC 
value of HFD is the highest at 0.86, surpassing CDSD (0.64), CDSK (0.53), 
LPJ (0.78), HB (0.70), and YAW (0.74). Our results indicate that HFD 
performs the best in predicting highway crash risk. Furthermore, HFD 
outperforms the selected surrogates in maximizing Recall while main-
taining a specific FAR. HFD significantly improves Recall, especially 
under conditions with lower FAR requirements. In contrast, when higher 
FAR requirements are imposed, the extent to which HFD improves Recall 
is reduced. This phenomenon can be attributed to a stringent threshold, 
which eliminates most low-risk segments. Comparative analysis shows 
that HFD effectively controls FAR while maintaining a high Recall, 
highlighting its practical utility and applicability. 

4.3.4 Example analysis and application of fractal method

Based on Fig. 15, when the FAR is set to 0.5, CDSD, CDSK, LPJ, HB, and 
YAW identified 100, 83, 122, 110, and 116 high-risk segments, 
respectively. In comparison, HFD identified 135 high-risk segments. 
Compared to the selected surrogates, HFD demonstrated higher sensi-
tivity in identifying high-risk segments. Two examples were chosen to 
explain and compare the identification performance of the surrogates. 
Fig. 16 includes 14 segments, along with their geometric features and 
trajectory fractal characteristics. According to CR, three high-risk areas 
were identified: Risk area 1 and 3 each contain one segment, while Risk 
area 2 contains three segments. The scatter points above and below the 
risk threshold line represent high-risk and low-risk segments identified 
by each normalized surrogate under the condition that FAR is set to 0.5, 
respectively. As shown in Fig. 17, an interchange area was also selected, 
where 6 high-risk regions were marked based on recorded crashes 
numbers, and a comparison was made between HFD and the selected 
surrogates. The red areas in the surrogates can be regarded as high-risk 

segments identified by the surrogates. The interpretation of the results 
for both examples is as follows: 

1) Surrogates related to geometric design: As shown in Fig. 16, the 
advantage of CDSD and CDSK lies in their ability to better identify 
high-risk road segments in highway curves, even in areas (such as 
before S-shaped curves and in the middle of interchanges) where 
kinematic triggers are not significantly noticeable. Our data shows 
that locations with non-compliant sight distance are far more prev-
alent than those with non-compliant skid resistance, which is why 
CDSD identifies more high-risk locations than CDSK. However, their 
performance is not ideal in diverging (Stations: 1057500–1058000) 
and merging (Stations: 1058500–1059000) zones, because they do 
not account for high-frequency weaving operations and interference 
from other lane-changing vehicles in these special areas (Rim et al., 
2023). Fig. 17 shows that, possibly due to the continuity of road 
geometric design, the high-risk segments identified by CDSD and 
CDSK exhibit some spatial concentration. However, this does not 
consider the heterogeneity of driver behavior on restricted road 
segments. For example, although ramps are design-constrained, 
speed limit measures make drivers extremely cautious on these sec-
tions (Feknssa et al., 2023), leading to some false alarms in design- 
based surrogates.

2) Kinematic trigger surrogates: Fig. 16 shows that the kinematic 
surrogates identify the merging and diverging areas (risk area 2) as 
high-risk sections, as the motion characteristics of these regions 
exhibit significant fluctuations. Studies have shown that the crash 
location does not theoretically coincide with the traffic risk location; 
the “real” risk location may actually be before the crash point (Gu 
et al., 2023). For example, the true high-frequency crash area is 
located before the S-curve (risk area 1), possibly due to the large 
cognitive workload experienced by drivers when encountering the S- 
curve (Khan et al., 2023), but there is no significant Kinematic 
triggers in this region. Risk area 3 can be similarly explained. 
Furthermore, if frequent braking behavior occurs on a section, it only 
indicates that the driver is making rapid adjustments in response to 
the constantly changing road features.

Fig. 16. Example 1: Comparison of risk identification ability of surrogates in Mainline Section.
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The performance of YAW identification is superior to that of velocity 
characteristics in interchange sections. YAW shows stronger fluctuations 
in the interchange areas compared to velocity changes, likely because 
steering to avoid crashes is the first action, ahead of braking, which is 
consistent with previous studies (Naude et al., 2019). HB is a kinematic 
indicator with a threshold setting, but the threshold can only indicate 
the risk for drivers on specific sections (Pinnow et al., 2021), and in 
many cases, these are false alarms. Fig. 17 shows that due to the speed 
limit of the ramp, velocity fluctuations are inevitable when vehicles 
enter the ramp from the mainline, which is one of the sources of false 
alarms. YAW performs relatively well, as it identifies many extreme 
values, which often align more closely with the actual conditions of 
interchange areas. In conclusion, the kinematic patterns of a section are 
easily influenced by extreme values, making the difference in kinematic 
triggers between high-risk and low-risk sections less obvious (Fig. 9).

Compared to the baseline surrogates, the high-risk segments identi-
fied by HFD under the condition of a FAR set to 0.5 are more numerous, 
with a miss rate of only 12.9 %. More importantly, the differences in 
recognition performance across road sections with different geometric 
features are minimal (Fig. 13), indicating that HFD exhibits stronger 
robustness than other safety surrogates. One possible explanation is that 
the fractal method scales and observes the entire trajectory sequence, 
fundamentally improving the granularity of road safety analysis based 
on vehicle trajectories, thereby enhancing the accuracy of feature 
analysis. On the other hand, fractal features better reflect the interaction 
between road geometry and actual vehicle displacement, enabling 
fractal features to cover multiple dimensions of vehicle driving charac-
teristics analysis, even in highly complex road segments. In addition, 
identifying low-risk road sections as high-risk road sections may result in 
certain resource waste. The data used in this article identifies many low- 
risk road sections as high-risk road sections. One possible explanation is 
that there are some factors that can cause surrogates triggers in these 
road sections, but do not increase the risk of crashes. This interesting 
finding deserves further investigation, as the evolution patterns of these 
independent crash surrogates may differ from crash related factors 
(Zhang et al., 2021). If we can distinguish abnormal surrogate triggers, it 
is likely to make the model’s output more in line with the actual road 
crash risk. In summary, fractal features are significantly superior to 
other features in terms of misjudgment, highlighting their advantages in 
practical applications. Therefore, for newly built roads or roads lacking 
crash statistics data, relevant departments can deploy the experimental 
method developed in this study to analyze the patterns of trajectory data 
and make preliminary judgments on high-risk crash sections.

5. Discussion

5.1. Theoretical significance and main findings

This paper explores the application of vehicle trajectory fractal the-
ory in road safety analysis. We propose three FD measurement methods 
for vehicle trajectory motion: the Ratio Method (Katz), the Covering 
Method (box-counting), and the Trajectory Length Scaling Method 
(Higuchi). By analyzing the variation of geometric features at different 
resolutions, it is found that vehicle trajectories exhibit distinct fractal 
characteristics. The fractal process of vehicle trajectories analyzes the 
non-linear and complex behaviors of vehicles at a finer granularity, 
capturing the multi-level structure of the trajectory. The analysis of 
variance tested significant differences in the HFD mean and standard 
deviation between high-risk and low-risk road sections. The HFD mean 
in the road section is more significant, and the HFD standard deviation in 
the road section can explain some high-risk road sections with low HFD 
mean. This result implies that the increased complexity and variability 
of vehicle trajectories will increase the risk of crashes. This suggests that 
HFD can serve as a safety surrogate, specifically used to assess crash risks 
associated with highway spatiotemporal factors based on large-scale 
telematics trajectory data.

We developed a method to estimate fractal parameters and discussed 
the impact of the key parameters k2 and s. To minimize the overall 
objective function value, s and k2 were set to intermediate values of 8 
and 9, respectively. Based on this, a negative binomial regression model 
for crash frequency prediction was established using the HFD mean and 
standard deviation of the road section as independent variables to 
examine the sensitivity of parameter variations. The calculation of HFD 
mean and standard deviation in the road section was tested for Monte 
Carlo errors, and the model parameters were statistically significant in 
most cases. The range of k2 between 6 and 10 ensures good estimation 
performance. Furthermore, the choice of s is more critical. In other 
words, the analysis length of the trajectory and the sampling frequency 
are essential, which means that to achieve the best fractal parameter 
estimation, higher frequency data acquisition devices or data interpo-
lation might be necessary. It is noteworthy that the fractal characteris-
tics of the same vehicle trajectory at different sampling frequencies may 
reflect similar road safety patterns, but their FD values are not directly 
comparable, as the richness of the motion details of vehicle trajectories 
varies with different sampling frequencies. This paper considers com-
mon FD such as HFD, BFD, and KFD, but correlation analysis shows that 
only HFD is associated with crash risk. BFD and KFD, on the other hand, 
are primarily related to some kinematic triggers. Therefore, further 

Fig. 17. Example 2: Comparison of surrogates’ ability to identify risks in an interchange area.
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research is needed on the application of BFD and KFD in traffic flow 
analysis.

This paper selects five widely used macroscopic surrogates as base-
lines. Compared to the selected surrogates, road segments with an HFD 
value below 1.6 account for only 8 %, and high-risk road segments show 
strong stability in their HFD values. This finding suggests that the 
selected surrogates may be influenced by more unconsidered factors. 
The paper analyzes the Recall and FAR balance for each surrogate. HFD 
increases the AUC value from 0.78 to 0.86 (for other surrogates). In 
summary, HFD outperforms the selected surrogates in maximizing 
Recall while maintaining a specific FAR, highlighting its practical utility 
and applicability.

Due to the interactive influence of road design elements on driving, 
frequent kinematic triggers do not necessarily indicate that the road 
segment is of high risk. In contrast, HFD has stronger recognition ability 
and robustness in different geometric design sections. One possible 
explanation is that the fractal method scales and observes the entire 
trajectory sequence, fundamentally improving the granularity of road 
safety analysis based on vehicle trajectories (Yilmaz and Unal, 2020), 
thereby enhancing the accuracy of feature analysis. On the other hand, 
fractal features better reflect the interaction between road geometry and 
actual driving displacement, enabling fractal features to cover multiple 
dimensions of vehicle driving characteristics analysis, even in highly 
complex road segments.

It is important to note that the method developed in this study can 
only estimate the overall risk tendency of road segments, and different 
types of drivers and micro-level behaviors may exhibit different HFD 
values in these high-risk areas. In other words, there is unobservable 
heterogeneity when calculating FD due to the differences in more 
detailed driving behavior and road scenarios. When we are able to 
capture these heterogeneities, we can identify high-risk behaviors in 
micro-driving actions. Since fractal methods enhance the feature 
capturing capability at a finer granularity compared to traditional tra-
jectory sequence analysis techniques, and also have lower computa-
tional resource demands, fractal theory holds promise for applications in 
traffic conflict detection technologies, potentially offering greater 
assistance in crash prevention and management. Although this paper 
does not address traffic conflicts directly, fractal methods could serve as 
a surrogate estimate for conflicts under conditions where vehicle- 
equipped data collection devices are limited. In conclusion, the focus 
of this paper is to demonstrate the advantages of fractal methods in 
identifying high-risk highway segments within the context of large-scale 
telematics data. Importantly, fractal analysis enhances the diversity of 
data and expands new perspectives for analyzing vehicle trajectory data. 
With the improvement of fractal methods, it is expected to use fractal 
methods to identify more accurate risk points on shorter road sections in 
the future.

5.2. Realistic meaning

Against the backdrop of significant advancements in the positioning 
accuracy of mobile sensors and the convenience of data collection, we 
analyzed the relationship between the FD of vehicle trajectories and 
road safety using large-scale telematics trajectory data. To the best of 
our knowledge, few studies have conducted highway safety analysis 
based on such large-scale high-frequency trajectory data. Our research 
further enriches the application of large-scale trajectory data in highway 
safety studies. Our theoretical study contributes to the enrichment of 
analytical methods for trajectory big data, offering new insights for road 
safety research. The fractal theory of vehicle trajectories indicates that 
the scaling behavior of vehicle trajectories reflects the micro and macro 
levels of vehicle motion patterns, despite the lack of obvious periodicity 
in the motion patterns of individual vehicles. For newly built roads, 
relevant departments only need to establish a road model consistent 
with the design drawings in simulation software, and then establish 
vehicle models and driving control models to obtain trajectory fractal 

data and make preliminary judgments on high-risk crash sections. For 
existing roads lacking crash data, based on the identification results, the 
department can develop targeted measures to improve road safety. This 
study has a limitation, although the spatial range of the data used in this 
article is large, detailed geometric feature data such as traffic signs, 
markings, roadside obstacles, etc. cannot be collected (Kim et al., 2024). 
Due to these issues, this study aims to eliminate the influence as much as 
possible through sufficient observation times. If more data can be ob-
tained in the future and more crash data can be matched, it is expected 
to provide more reliable results in the validation process of the method. 
Human factors have a huge impact on the occurrence of crashes. If the 
driver information of vehicles can be matched in the future, it is ex-
pected that fractal methods for vehicle trajectories that reflect human 
factors can be developed. The vehicle trajectories used in this study do 
not include those involving lane changes, diverging, or merging, and 
these trajectories are sourced from highways. Therefore, it remains to be 
further investigated whether the research findings are applicable to 
urban roads or special road sections. Finally, it is recommended to 
evaluate the crash risk based on vehicle driving trajectories in the 
context of Connected and Automated Vehicle (CAV) environments 
(Dong et al., 2023).

6. Conclusion

This paper explores the application of vehicle trajectory fractal the-
ory in road safety analysis using large-scale telematics trajectory data. A 
total of 90,000 vehicle trajectories were extracted from 314 road sec-
tions. These data were derived from GPS records of freight vehicles on 
highways in China. Using this data, we validated the significant rela-
tionship between trajectory FD and highway crash risks, and explored 
the advantages of fractal characteristics over the selected surrogates. In 
this comprehensive analysis, we made some new findings and further 
discussed the significance of vehicle trajectory fractals. We hope these 
findings will help enhance the dimension of trajectory feature analysis 
using trajectory data and refine the granularity of road safety analysis, 
enriching the analytical methods for vehicle trajectory data and 
providing methodological support for improving road geometric design 
and enhancing road safety.
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