
Contents lists available at ScienceDirect 

Transportation Research Part D 

journal homepage: www.elsevier.com/locate/trd 

Exploration of roadway factors and habitat quality using InVEST 
Hong Zhanga,b, Chi Zhanga,b,⁎, Tao Hua,b, Min Zhanga,b, Xiaowei Rena,b, Lei Houc 

a Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, Shaanxi, China 
b Engineering Research Center of Highway Infrastructure Digitalization, Ministry of Education, Xi’an 710000, Shaanxi, China 
c School of Engineering, RMIT University, Melbourne 3000, Victoria, Australia  

A R T I C L E  I N F O   

Keywords: 
Habitat quality 
InVEST 
GEE 
Dense roadway networks 
Road-effect zone 
Ecologically fragile areas 

A B S T R A C T   

Roadways vary in structural, geotechnical, locational, and operational properties, and synergies 
among these factors may present overwhelming challenges to understanding their full effects on 
the habitat quality (HQ). To explore the impact of dense roadway networks on an ecologically 
fragile region in the northwest of China, this study applied the Integrated Valuation of Ecosystem 
Services and Trade-offs (InVEST) to evaluate the HQ spatiotemporal distribution of the study 
area. Then, Generalised Estimating Equations (GEE) were formulated to examine the cumulative 
impact due to the operation of an increasing amount of roadways over the past two decades. 
According to the results, the influence of different road types on the HQ was apparent within the 
road-effect zone, and road grading reduction, road length and operation duration increase can 
harm the HQ within the road-effect zone. Overall, this study generates knowledge concerning the 
design and operation of environmentally-friendly roadways in ecologically fragile areas.  

1. Introduction 

Nowadays, many countries have suffered from severe environmental problems as a consequence of the development of infra
structure projects that have modified biophysical characteristics of the earth’s terrestrial surface, including the distribution of ve
getation, water and soil (Zhou et al., 2019). Changes in land use and land cover (LULCc) are important drivers of global environ
mental changes such as emissions of greenhouse gases, global climate change, loss of biodiversity, and loss of soil resources. In recent 
years, LULCc research has become an essential topic to climate and environmental change programs at a global scale, as rapid 
economic and infrastructure development that lead to LULCc can impair ecological environment and biological habitats. And the 
direct impact could be habitat loss, fragmentation, degradation of landscape connectivity, biodiversity disappearance, and so on 
(Bruschi et al., 2015; Mortelliti et al., 2011; Rubio and Saura, 2012). Numerous approaches have been formulated and applied for 
detecting and modelling the LULCc at different levels, which provides valuable lessons for infrastructure planning decision-making 
and achieving ecological balance. These approaches include remote sensing (Li et al., 2014), terrestrial scanning (Gruszczyński et al., 
2017), species richness monitoring (Pedersen and Krogli, 2017), ecological dominance (Garcia-Vega and Newbold, 2020), endemism 
analysis (Ocampo Salinas et al., 2019), temporal analysis (Jiang et al., 2020), vegetation index differencing (Zhou et al., 2020), 
Landsat image analysis (Duan et al., 2020), principal components analysis (Fan and Zhao, 2019), and so forth. Besides, accurate geo- 
referencing landmarks and chronological repetitive data can be acquired using satellite sensing and geographic information system 
(GIS). These types of applications have been widely used for identifying uncharacteristic changes between multiple environmental 
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datasets which can accurately reflect the LULCc in large scale terrain (MohanRajan et al., 2020). 
According to D’Amico et al. (2015) and Delgado et al. (2019), building linear roads adjacent to or inside a habitat would directly 

affect the life of the habitat wildlife, followed by behavioural responses such as flushing, fleeing, and avoiding frequently disturbed 
areas. In the long run, there will be other side effects such as alien species invasion to the local ecosystem, reduced food intake, and so 
on (Boarman and Sazaki, 2006; Clements et al., 2014; Ibisch et al., 2016). Vehicle noise and exhaust pollution can also deteriorate the 
biological environment. Using the traffic noise and avian vocal activity techniques, Halfwerk et al. (2011) measured the noise and 
species-specific acoustic behaviours of the roadside forest affected by the traffic. It was found that the traffic noise level varied 
substantially in space, time and frequency, which caused the significant negative impact on certain species. A viable solution of 
lowering the traffic noise volume was to levy the ‘noise tax’ or limit the vehicles within a certain time period during a day. Typically, 
a geographical region where significant environmental effects may present on its natural systems and be influenced by its road 
networks/traffic is defined as the road-effect zone (van der Ree et al., 2011). The zone of impact varies in types and degree of impact, 
based on distance from the roadway, environmental conditions, and traffic intensity (Wu et al., 2014a). Prime approaches for un
derstanding road-effect zone biodiversity include statistical analysis (such as meta-analysis and regression modelling), observational 
simulation, field investigation, and use of information technology systems (such as GIS applications) (Wang et al., 2014). Eigenbrod 
et al., (2009) formulated a linear piecewise regression model to measure the extent and type of a heavy-truck traffic motorway’s road- 
effect zone, which revealed that the zone width was as wide as up to 1 km to amphibians such as frogs and toads. It was also found 
that truck traffic at night was the second to none factor that significantly reduced the use of breeding habitat within the motorway 
effect-zone. Benitez-Lopez et al. (2010) collected the mean species abundance data and applied the meta-analysis and meta-re
gression technique to measure the road-effect size on mammals and birds. The results manifested the effect of infrastructure de
velopment could reach 1 km to small-sized mammals (such as bird populations) and 5 km to large-sized mammals. Otherwise, no 
significant relation between the species abundance and traffic intensity was found. D’Amico et al. (2015) used vertebrate animals 
causality data to examine the impact of road life-history and spatiotemporal factors. Other researchers also used species distribution 
models to explore the spatial distribution of biodiversity in large-scale terrain (Araujo et al., 2019; Di Febbraro et al., 2015). Despite 
ample, these studies present very similar methodologies which are animal pattern observation, data collection and processing. 
Unfortunately, the data could have over-fitting and under-fitting problems (Xu et al., 2015, 2016), let alone the tedious process of 
acquiring and processing this data. 

To overcome the data problem, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) models were later on for
mulated, and have provided viable solutions for evaluating habitat quality (HQ) (Moreira et al., 2018), hydrological services, carbon 
storage and sequestration, and nutrient and sediment delivery (Arunyawat and Shrestha, 2016; Trisurat et al., 2016). Wu et al. 
(2014a) used the InVEST model to assess the long-term effects of transportation infrastructure on habitats, which proved the con
servation of agricultural and forested lands could improve the HQ and preserve the rare habitats. Terrado et al. (2016) modified the 
InVEST model for the assessment of terrestrial and aquatic HQ. It was found their modified model can precisely forecast the effects of 
land and freshwater habitat conservation. Shaffer et al. (2019) parameterised the InVEST model, quantified the grassland-bird ha
bitat, and assessed the degradation status of the remaining grassland-bird habitat as influenced by crop and energy. Overall, InVEST 
models seem to offer a promising means for understanding the ecological impact caused by infrastructural projects, especially the 
roadways this study focused on, under the backdrop of China’s massive road network construction that gives rise to growing en
vironmental problems. Nevertheless, assessing a roadway’s impact on the surrounding landscape is not an easy task as part of the 
impact can take years to manifest. Besides, roadways may vary in structural, geotechnical, location, and operational properties, and 
synergies among these factors may present overwhelming challenges to understanding the full effects of roads on the HQ. In view of 
this, this study attempts to examine as many aspects of the roadways and their interaction with the habitat surrounding environment, 
and to provide unique findings on the spatial scales at which the studied roads affected the HQ. A general hypothesis to underpin the 
following investigation is that within the road-effect zone, roadway-related factors (e.g. road type, operation duration, length, etc.) 
can affect the HQ to different extents. 

2. Research methodology 

2.1. Study areas 

Qinghai Province (89°35′–103°04′E, 31°09′-39°19′N) is species-rich and ecologically sensitive. It is located in the Qinghai-Tibet 
Plateau with an average elevation of 4000 m (Li et al., 2018). According to the World Database of Key Biodiversity Areas 
(International Union for Conservation of Nature, 2019), the biodiversity area of Qinghai accounts for 28.29% of the total provincial 
area (Fig. 1). Qinghai belongs to a typical plateau continental climate, i.e. colossal day and night temperature difference, little and 
concentrated precipitation, etc. The average annual temperature is −5.7 to 8.5 °C, and the average yearly rainfall is 50–450 mm, 
mainly concentrated from July to September (Dong et al., 2013). East Qinghai is less mountainous than the west and is of rich species 
diversity. Due to climate change and human activity invasions, its regional ecosystem services and biodiversity are facing severe 
degradation problems (Li et al., 2018; Zhang et al., 2019). In recent years, Chinese governments at different levels have demarcated 
several nature reserves and promulgated ecology conservation and restoration programs to protect Qinghai’s wildlife, wetlands, 
forests and desert ecosystems (Ministry of Ecology and Environment of the People’s Republic of China, 2017). This study focused on 
the eastern Qilian Mountains (Zone 1) and the area between the Qinghai Lake and Amne Machin Range (Zone 2) (Fig. 1), as the 
habitats in these areas are more biodiverse yet vulnerable due to sustained drought and rapid development of infrastructure (partly 
because of China’s Belt and Road initiative). There are various endangered species listed in the Red List of Threatened Species and the 
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Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) (Table A.1). Since 2000, road projects in 
both Zone 1 and Zone 2 have increased dramatically. As of 2018, the total first-class, second-class and third-class highway mileages of 
Zone 1 had increased by 70.866 km, 254.558 km and 435.033 km; the total expressway, second-class and third-class highway 
mileages of Zone 2 had increased by 556.795 km, 555.895 km and 333.558 km (Table 1). 

Fig. 1. Land overlays of the study areas (referred to from http://www.resdc.cn).  

Table 1 
Road project demographics in the study areas.       

Study areas Road ID Level Length of increase since 2000 (km) Years of operation (as of 2018)  

Zone 1 S304 First-class  70.866 2 
G227 Second-class  119.798 ≥18 
S204 Second-class  254.558 6 
S105 Third-class  58.878 9 
S207 Third-class  109.373 ≥18 
S302 Third-class  367.155 13 
X522 Third-class  171.026 ≥18 
X566 Third-class  34.518 ≥18  

Zone 2 G6 Expressway  298.515 6 
G0613 Expressway  194.534 1 
S2013 Expressway  63.746 2 
G214 Second-class  233.769 12 
G109 Second-class  286.706 9 
S206 Second-class  35.420 9 
X310 Second-class  20.925 ≥18 
S101 Third-class  138.160 9 
S201 Third-class  88.829 ≥18 
S207 Third-class  266.110 ≥18 
S301 Third-class  23.084 9 
S311 Third-class  172.314 9 
X303 Third-class  23.324 ≥18 
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2.2. LULCc analysis 

The land use and land cover (LULC) raster maps of 2000, 2010 and 2018 generated by the Landsat Thematic Mapper/Landsat 
Enhanced Thematic Mapper/Landsat 8 remote sensing images were retrieved from the data centre of the Resources and 
Environmental Science of Chinese Academy of Sciences. The resolution of the maps was 1 km. The study areas constituted both first- 
class land (i.e. farmland, woodland, pastureland, waterbody, built-up land and unexploited land) and second-class land (e.g. paddy 
field, dry land, shrub, sparse woodland, high coverage pastureland, river, lake, reservoir, swamp, rural settlement, wetland, etc.) (Liu 
et al., 2014). The Land-use Dynamic Degree (LDD) model adapted from Arunyawat and Shrestha (2018) and Wu et al. (2014b) was 
applied in this study to examine the first tier LULCc within a specified period, as represented in Equation (1). 

= × ×K U U
U T

1 100%a b
b a

a (1) 

where Ka–b represents the LDD of a certain LULC throughout the study period, Ua represents the area of a certain LULC at the project 
outset, Ub represents the same area at the project completion, and T represents the period (measured in years). Then, the Markov 
transfer matrix was applied to quantitatively analyse the transfer area between the different LULC types, namely, spatiotemporal 
evolution, LULCc trend, and so on (Gurung et al., 2018). The Markov model was able to quantitatively describe the system state and 
transition and reflect the transition process of a meta-stable system from T to T + 1. The matrix can be expressed as Equation (2). 
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where the horizontal and vertical values represent the LULC status at the project outset and completion, Pij represents the trans
formation of the ith area to the jth within the study period, and n represents the number of LULC types. 

2.3. HQ evaluation 

This study utilised the InVEST 3.5.0 × 86 HQ module to examine the HQ spatiotemporal characteristics and estimate the extent of 
habitat degradation. The advantage of this module is that it can generate the HQ maps based on LULC and threats information, 
regardless of the species distribution data adequacy (Sharp et al., 2018). This way, the habitat total threat level can be expressed as 
Equation (3). 
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where Dxj represents the xth grid cell’s threat level of the jth LULC type, y represents the grid cells entirety on threat r’s raster map, wr 

represents each threat’s relative destructiveness (ranging from 0 to 1) to the habitats entirety, ry represents the yth grid cell’s threat 
intensity (ranging from 0 to 1), irxy represents the distance between the habitat and the threat source (its linear and exponential 
distance-decay functions can be expressed as Equation (4) and Equation (5)), βx represents the xth grid cell’s accessibility level 
(ranging from 0 to 1), and Sjr represents the jth LULC type’s sensitivity (ranging from 0 to 1) on the threat. 
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where dxy represents the linear distance between x and y, and dr max represents the maximum effective distance that r could reach. 
After the retrieval of Dxj, a half-saturation function expressed as Equation (6) was used to translate a grid cell’s threat score into HQ. 
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where Qxj represents the quality of x in j, Hj represents the habitat suitability (ranging from 0 to 1) of j, and Z (i.e. a constant equaling 
to 2.5) and k (its default value is 0.5) are the scaling parameters. The farmland of Zone 2 and residential land (including roads) of 
Zone 1/Zone 2 were considered as the HQ threat sources. The parameters of each threat’s relative impact weight, its maximum 
effective distance, and distance-decay function were determined according to the literature listed in Table 2. The habitat suitability of 
each LULC type and the relative sensitivity of each habitat type versus its threat were determined by the animal and plant information 
of the study areas (Table A.2). The accessibility levels of Zone 1 in 2010 and 2018 were identical (i.e. equaling to 0.8) because Zone 1 
became a provincial nature reserve since 2005, and the remaining accessibility levels were all 1. A grid cell’s threat source value was 
set to 1 if the threat was present or otherwise 0. The output results accuracy was improved using the resampling techniques (i.e. 
increasing the LULC raster maps resolution from 1 km to 30 m). 

H. Zhang, et al.   Transportation Research Part D 87 (2020) 102551

4



2.4. Impact analysis techniques 

Next, the retrieved road-effect zone HQ data (between 2000 and 2018) was fed into IBM SPSS Statistics 24 to establish 
Generalised Estimating Equations (GEE). Given the GEE were able to overcome the variable non-independence issue in repeated 
measurements (Önder, 2016), and they were used to analyse the relationship between the road-related variables and the HQ change 
(denoted as HQc) (these variables include, but are not limited to, road level (G), road operation duration (Y), road length (L), LULCc, 
and the distance between a data point and a road’s centerline (D), and so on (Table 3)). During the process of GEE establishment, the 
Quasi-likelihood under Independence Model Criterion (QIC) and Corrected Quasi-likelihood under Independence Model Criterion 
(QICC) were collectively used to improve the data correlation (Kwon et al., 2017). As well, the establishment of optimal GEE was 
based on a series of steps, which included fixing the explanatory variables (i.e. G, Y, L, D, LULCc), using the QIC to determine the 
optimal working correlation structure (i.e. the correlation between datasets), changing the explanatory variables’ values and forms, 
and applying the QICC for determining the optimal model. Lastly, the Binomial distribution type and Logit link function (Equations 
(7)–(10)) were formulated to determine the road-effect zone HQc: 

=Y if HQ decrease
else

1
0 (7)  

= =µ E Y P( ) (8)  

= =g µ Logit P log P P( ) ( ) ( /(1 )) (9)  

= + + + + + +Logit P G Y L LULCc G Y LULCc lnD( ) 0 1 2 3 4 5 6 (10) 

where Y represents the response variable which can also derive HQc, μ represents the response variable expectation, P represents the 
probability when the response variable reaches 1, g(·) represents the link function, also known as the Logit function, and the 
parameter vector β comprises of ( , , , , , , )0 1 2 3 4 5 6 . 

3. Results analysis 

3.1. LULCc 

The LDD results indicated that the LULCc were minor in the study areas between 2000 and 2018 (Fig. 2). In Zone 1, the sizes of 
the farmland and the built-up land were increased by 0.5% and 0.7% per year between 2000 and 2018, and the size of the waterbody 
was reduced by 0.1% between 2000 and 2010 and 1% between 2010 and 2018. Meanwhile, apparent changes were not witnessed in 
other areas. In Zone 2, the sizes of the farmland, waterbody and pastureland kept increasing at a rate of 0.3% to 0.9% per annum 
since 2000, whereas the unexploited land and woodland downsized slightly. A noticeable increase in size at a rate of 10.1% per year 

Table 2 
Threats features.      

Threats (distance-decay function: 
exponential) 

Weight Max effective distance 
(km) 

References  

Farmland 0.8 4 (Wu et al., 2014a; Terrado et al., 2016; Asadolahi et al., 2018; Shaffer 
et al., 2019) Residential areas 1 5  

Expressways 0.9–1 4 (Wu et al., 2014a; Asadolahi et al., 2018; Hu et al., 2018; Li et al., 
2019) First-class highways 0.8–0.9 3 

Second-class highways 0.7–0.8 2 
Third-class highways 0.5–0.6 1 

Table 3 
Presentation of the non-collinear road-related variables.     

Variable Denotation Value  

Road level G 0: expressway 
1: first-class highway 
2: second-class highway 
3: third-class highway 

Years of operation (as of 2018) Y integer 
Road length (km) L decimal 
The distance between a data point and a road’s centerline D decimal 
LULC changes (transforming into woodland or pastureland) LULCc 1: observed 

0: not observed 
HQ reduction within the road-effect zone HQc 1: observed 

0: not observed 
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was observed on the built-up land between 2010 and 2018. 
The LULC area transfer matrix showed the original pastureland and woodland were exploited for infrastructural and agricultural 

purposes, and more and more unexploited land was used for recovering the pastureland and woodland (Fig. 3 and Table 4). In Zone 1, 
a total of 62 km2 woodland and pastureland (equivalent to 83.78% of the increased farmland) was exploited for agricultural use, 
11 km2 pastureland (equivalent to 122.2% of the increased built-up land) for infrastructural use, and 60 km2 unexploited land was 
turned into woodland; in Zone 2, 249 km2 pastureland (equivalent to 91.89% of the increased farmland) was exploited for agri
cultural use, 69 km2 pastureland (equivalent to 94.52% of the increased built-up land) for infrastructural use, and 1815 km2 un
exploited land was turned into pastureland. 

Fig. 2. Urban expansion LDD in Zone 1 (a) and Zone 2 (b).  

Fig. 3. Land overlays of the study areas in 2000 (a), 2010 (b), and 2018 (c).  
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3.2. HQ spatiotemporal distribution 

It can be seen from Fig. 4 and Fig. 5 that the HQ spatiotemporal distribution varied substantially in the study areas from 2000 to 
2018. To the northwest Zone 1 and northwest Zone 2, the HQ went down significantly. An opposite trend was witnessed in the 
southeast areas of both zones. 

The results also showed that the HQ within the road-effect zones reduced significantly (Table 5), which was much lower than the 
HQ of the entire study areas (the only exception occurred to the first-class highways of Zone 1 in 2018). The HQ improved when the 

Table 4 
LULC transfer matrix from 2000 to 2018 (unit of measurement: km2).            

LULC Farmland Woodland Pastureland Waterbody Built-up land Unexploited land Total  

Zone 1 Farmland 487 76 147 18 28 1 757 
Woodland 107 2660 1605 83 9 174 4638 
Pastureland 178 1554 6407 239 29 1449 9856 
Waterbody 15 91 277 130 2 118 633 
Built-up land 40 5 18 1 9 0 73 
Unexploited land 4 234 1390 105 5 2905 4643 
Total 831 4620 9844 576 82 4647 20,600  

Zone 2 Farmland 1112 2 392 43 30 44 1623 
Woodland 3 687 709 9 0 143 1551 
Pastureland 641 589 21,547 290 82 2850 25,999 
Waterbody 25 6 265 460 4 60 820 
Built-up land 25 0 13 15 17 5 75 
Unexploited land 88 151 4665 120 15 5482 10,521 
Total 1894 1435 27,591 937 148 8584 40,589 

Fig. 4. HQ spatial distribution in 2000 (a), 2010 (b), and 2018 (c).  
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Fig. 5. HQc in the study areas.  

Table 5 
HQ and ANOVA scoring of different roadways.           

Year Mean Expressway First-class highway Second-class highway Third-class highway P-value  

Zone 1 2000  0.715 Nil Nil  0.512  0.583   < 0.001 
2010  0.717 Nil Nil  0.587  0.572   < 0.001 
2018  0.709 Nil 0.769  0.653  0.568   < 0.001  

Zone 2 2000  0.701 Nil Nil  0.607  0.345   < 0.001 
2010  0.686 Nil Nil  0.513  0.448   < 0.001 
2018  0.715 0.506 Nil  0.403  0.507   < 0.001 

Table 6 
Demonstration of Y, G and HQ reduction.        

Road Y G HQ reduction after an operation  

Zone 1 S304 2 First-class  0.131 
S204 6 Second-class  0.131 
S105 1 Third-class  0.263 
S302 5 Third-class  0.153  

Zone 2 G6 6 Expressway  0.122 
G0613 1 Expressway  0.131 
S2013 3 Expressway  0.121 
G214 4 Second-class  0.242 
G109 1 Second-class  0.206 
S206 1 Second-class  0.264 
S101 1 Third-class  0.223 
S301 1 Third-class  0.029 
S311 1 Third-class  0.025 

Table 7 
QIC goodness of the fit values.     

Working correlation structure Covariates QIC  

Independent LULCc, G, Y, L, D  8987.175 
3-dependent  9038.375 
5-dependent  9036.394 
7-dependent  9032.873 
9-dependent  9045.624 
Autoregressive of Order 1  9037.237 
Exchangeable  9120.492 
Unstructured  11425.992 
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road grade increased, as illustrated from the comparison between the third-class highways and the second-class highways. In Zone 1, 
a continuous drop and increase of the HQ to the third-class highways and second-class highways were observed respectively. In Zone 
2, this trend was completely opposite to Zone 1. To both zones, high-grade roadways compromised the HQ to the most (Table 6). 

3.3. Analysis of the HQ reduction factors 

Table 7 and Table 8 showed that the most optimal correlation structure is the one with the smallest QIC value, and the most 
optimal correlation model is the one with the smallest QICC value. According to the GEE results (Table 9), most of the significance 
values were lower than 0.05, meaning G, Y, L, D, LULCc were the most critical factors that affected the HQ. The estimated coefficient 
B values of 0.446 and 0.003 evidenced that within the road-effect zones, lowering the road grade and extending the road length is 
likely to reduce the HQ. The B value of −0.124 indicated that the longer a road was operated, the greater chance its HQ could be 
increased. This finding may be attributed to the establishment of environmental protection zones. The B value of 0.059 showed that 
some of the areas, despite far away from the road centerline, could still suffer from HQ drops even if the land was repurposed. 
Besides, there was not enough evidence from the GEE results that underpinned the functionality of land conversion into woodland 
and pastureland in HQ improvement. 

4. Discussion and conclusions 

This paper presents an innovative study that sheds light on transport engineering, environment ecology, ecological compensation, 
and LULC decision-making and management. It evidences that HQ within a road-effect zone can be significantly affected by roadway 
projects. Specifically, lowering the road grade, extending the road length, prolonging the operation duration, and increasing the 
traffic volume are the most influencing factors on the HQ, which may be because lower-grade roads are usually associated with 
higher density (i.e., length) and longer operation time (van Langevelde and Jaarsma, 2009). The study also showed that to certain 
higher-grade roads that possess complex structural properties and high volumes of traffic, the HQ drops were also apparent. Herein 
our hypothesis is verified. Interestingly, it is implied from the results that HQ drops caused by roadway networks may not be 
reversible, despite part of the woodland and pastureland studied was restored later on. Viable solutions of counterbalancing the HQ 
drops could be minimising and where possible avoiding the impacts of construction and maintenance activities on the environment 
(Santos et al., 2017), encouraging the use of sustainable materials such as recycled asphalt, concrete, glass fines and rubber (Duc 

Table 8 
QICC goodness of the fit values (only listing the top 10 models).     

Working correlation structure Covariates QICC  

Independent LULCc, G, Y, L, (lnD), G*Y, LULCc* lnD  8762.647 
Independent LULCc, G, Y, L, lnD, G*Y  8775.663 
Independent LULCc, G, Y, L, G*Y*L, LULCc* lnD  8790.380 
Independent LULCc, G, Y, L, (lnD), LULCc* lnD  8800.486 
Independent LULCc, G, Y, L, lnD, G*Y*L  8801.906 
Independent LULCc, G, Y, L, lnD, Y *L  8805.042 
Independent LULCc, G, Y, L, lnD  8810.969 
Independent LULCc, G, Y, L, lnD, G*L  8811.372 
Independent LULCc, G, Y, L, D  8811.381 
Independent LULCc, G, L, G*Y, LULCc* lnD  8843.838 

Table 9 
Demonstration of the GEE results.        

Parameter Estimated coefficient (B) 95% Wald Confidence Interval Sig. Exp (B) 

Lower Upper  

Intercept  1.838 0.591  3.086  0.004  6.286 
G  0.446 0.097  0.795  0.012  1.562 
Y  −0.124 −0.200  −0.048  0.001  0.883 
L  0.003 0  0.006  0.041  1.003 
LULCc = 1  −1.152 −2.524  0.220  0.100  0.316 
[LULCc = 1] * lnD  0.059 0.010  0.108  0.018  1.060 
[LULCc = 0] * lnD  −0.100 −0.218  0.018  0.097  0.905 
G * Y  −0.036 −0.079  0.006  0.095  0.964    
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et al., 2017), protecting and maintaining the flora, fauna and ecosystems that may be impacted by road operation and maintenance 
(Sitzia et al., 2016), and making the transport system more sustainable and environmentally conscious (Gössling et al., 2016). It is 
also recommended that road planning authorities should consider staggering infrastructure development times where possible. 

As well, HQ is likely to be subject to the environmental protection zone level, size, time of establishment, and so on. To underpin, 
it was likely that the marginal improvement of HQ in Zone 1 between 2000 and 2010 was because its protection level was relatively 
low (i.e. provincial nature reserve) and the time of establishment was a bit late (i.e. since 2005), whereas in Zone 2, the HQ greatly 
improved since 2000 because the surrounding Qinghai Lake and Sanjiangyuan national nature reserves have been established over 
30 years (Ministry of Ecology and Environment of the People’s Republic of China, 2017). 

This study took the LULC and threats information as the InVEST model inputs, and all threats were considered additive towards 
the evaluation of HQ, which were less than the collective impact of multiple threats (Sharp et al., 2018). We understand this could 
oversimplify the evaluation scenario. Therefore, we would like to address this shortfall in the future. As well, this study has not well 
rationalised the HQ change mechanism due to climate change, seasons, road properties, greenhouse gas emissions, human activities 
(e.g. grazing, mining, overhunting), and so on (Clements et al., 2014; Hu et al., 2018). Therefore, this will be a targeted area in our 
future work, along with other objectives such as formulating pragmatic road development methodologies for pursuing development 
and environmental sustainability. 
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Appendix 

See Table A1-A2. 

Table A1 
The endemic species and their habitats and conservation status in the study areas.        

Scientific name Habitat Distribution area Conservation status 

National CITES IUCN  

Gazelle De Przewalski (Procapra 
Przewalskii) 

Pastureland and sandy land Zone 2 First-level N/A Endangered 

Snow Leopard (Panthera Uncia) Shrub, bare land and bare rock texture Zone 2 First-level Appendix I Vulnerable 
White-lipped Deer (Cervus 

Albirostris) 
Pastureland and Shrub Zone 1 & 2 First-level N/A Vulnerable 

Wild Yak (Bos Mutus) Pastureland Zone 1 & 2 First-level Appendix I Vulnerable 
Black-necked Crane (Grus 

Nigricollis) 
Pastureland, lake, swamp and beach Zone 1 & 2 First-level Appendix I Vulnerable 

Band-tailed Fish-eagle (Haliaeetus 
Leucoryphus) 

Pastureland, lake, river channel and 
reservoir pit 

Zone 2 First-level N/A Endangered 

Asian Imperial Eagle (Aquila 
Heliaca) 

Pastureland, beach, woodland Zone 2 First-level Appendix I Vulnerable 

Black Stork (Ciconia Nigra) Woodland, swamp, lake, river channel, 
reservoir pit, farmland and pastureland 

Zone 1 First-level Appendix II N/A 

Demoiselle Crane (Anthropoides 
Virgo) 

Pastureland, swamp, lake, beach and 
farmland 

Zone 1 Second-level N/A N/A 

Qinghai Spruce (Picea Crassifolia 
Kom.) 

Woodland Zone 1 Provincial tree N/A N/A 

Qilian Juniper (Juniperus 
Przewalskii Kom.) 

Woodland Zone 1 The dominant forest species N/A N/A    
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